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Université René Descartes, 4, Avenue de l’Observatoire, 75270 Paris Cedex 06, France. E-mail: roques@pharmacie.univ-paris5.fr

0031-6997/99/5104-0745$03.00/0
PHARMACOLOGICAL REVIEWS Vol. 51, No. 4
U.S. Government work not protected by U.S. copyright Printed in U.S.A.

745

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

 http://pharmrev.aspetjournals.org/content/52/1/177.full.pdf
An erratum has been published:

http://pharmrev.aspetjournals.org/
http://pharmrev.aspetjournals.org/content/52/1/177.full.pdf


1. CCK in panic attacks and anxiety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
2. CCK and schizophrenia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
3. CCK and depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
4. CCK and memory processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
5. Interactions between CCK and enkephalin systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

a. In the control of pain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
b. In behavioral responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

VIII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
IX. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
X. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

I. Introduction

The peptide cholecystokinin (CCK)2 was originally
discovered in the gastrointestinal tract (Ivy and Old-
berg, 1928) and has been shown to mediate pancreatic
secretion and contraction of gallbladder. Then, CCK was
described in the mammalian central nervous system
(CNS) as a gastrin-like immunoreactive material
(Vanderhaeghen et al., 1975), and it is now generally
believed to be the most widespread and abundant neu-
ropeptide in the CNS. This peptide, initially character-
ized as a 33-amino-acid sequence, is present in a variety
of biologically active molecular forms derived from a
115-amino-acid precursor molecule (prepro-CCK; De-
schenes et al., 1984), such as CCK-58, CCK-39, CCK-33,
CCK-22, sulfated CCK-8 [Asp-Tyr(SO3H)-Met-Gly-Trp-
Met-Asp-Phe-NH2] and CCK-7, unsulfated CCK-8 and
CCK-7, CCK-5, and CCK-4 (Trp-Met-Asp-Phe-NH2; Fig.
1; Rehfeld and Nielsen, 1995). The presence of CCK in
both gut and brain raises the intriguing issue of the
evolutionary significance of separate pools of a peptide
in two systems originating from different embryonic
zones (i.e., endoderm and ectoderm, respectively).

Receptors for CCK have been pharmacologically clas-
sified on the basis of their affinity for the endogenous
peptide agonists CCK and gastrin, which share the same
COOH-terminal pentapeptide amide sequence but differ
in sulfation at the sixth (gastrin) or seventh (CCK) ty-
rosyl residue. Two types of CCK receptors (type A, “ali-
mentary”, and type B, “brain”) have thus been distin-
guished. The CCK-A receptor was first characterized
using pancreatic acinar cells (Sankaran et al., 1980),
whereas the CCK-B receptor, with a different pharma-
cological profile, was discovered in the brain (CCK-B;
Innis and Snyder, 1980b). The gastrin receptor mediat-
ing acid secretion in the stomach was initially thought to
constitute a third type of high-affinity receptor on the
basis of its location and small differences in affinity for CCK and gastrin-like peptides (Song et al., 1993). How-

ever, subsequent cloning of gastrin and CCK-B receptors
revealed their molecular identity (see later). CCK-A and
CCK-B receptor types have been shown to differ by their
relative affinity for the natural ligands, their differential
distribution, and their molecular structure. The CCK-A
receptor binds sulfated CCK with a 500- to 1000-fold
higher affinity than sulfated gastrin or nonsulfated CCK

2 Abbreviations: CCK, cholecystokinin; IUPHAR, International
Union of Pharmacology; CNS, central nervous system; PKC, protein
kinase C; Hpa, 4-hydroxyphenylacetyl; DRG, dorsal root ganglia;
PLC, phospholipase C; IP3, inositol triphosphate; GPCR, G protein-
coupled receptor; PLA2, phospholipase A2; MAPK, mitogen-activated
protein kinase; BH, Bolton-Hunter; TM, transmembrane domain;
ECL, extracellular loop; SOS, the product of son of sevenless.

FIG. 1. Predicted structure of human preprocholecystokinin. The sig-
nal peptide consists of residues 220 to 21. The amino terminal flanking
peptide consists of residues 1 to 25. The largest characterized form from
brain and intestine, CCK-58, consists of residues 26 to 83. Other active
molecular forms are derived from this precursor, such as CCK-39, CCK-
33, CCK-22, CCK-7, and CCK-5.
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(Silvente-Poirot et al., 1993a). The CCK-B/gastrin recep-
tor binds gastrin and CCK with almost the same affinity
and discriminates poorly between the sulfated and non-
sulfated CCK analogs (Saito et al., 1980). The distribu-
tion of CCK-A and CCK-B/gastrin receptors is tissue
dependent (see below).

Based on pharmacological and biochemical studies,
the existence of subtypes of CCK-A and CCK-B receptors
has been postulated. Nevertheless, only two genes have
been cloned. The initial nomenclature of the receptors as
CCK-A and CCK-B receptors is generally accepted by
pharmacologists and molecular biologists. Based on the
guidelines defined by the International Union of Phar-
macology (IUPHAR) Committee on Receptor Nomencla-
ture and Drug Classification, receptors should be named
after their endogenous ligands and identified by a nu-
merical subscript corresponding to the chronological or-
der of the formal demonstration of their existence by clon-
ing and sequencing (Vanhoutte et al., 1996). Because the
CCK-A receptor was the first to be cloned, it should be
renamed CCK1, and the CCK-B receptor should become
CCK2. According to these guidelines, new splice variants, if
pharmacologically relevant, should be indicated by sub-
script lowercase letters, in parentheses, such as CCK1(a),
CCK1(b), CCK2(a), and CCK2(b) receptors. This new nomen-
clature would allow any newly discovered CCK receptor to
be logically named according to the same informative
guidelines (see Vanhoutte et al., 1996).

This rational nomenclature has been adopted in the
present review, which is devoted to the two CCK recep-
tors whose existence has been firmly established
through cloning.

II. Characterization of Cholecystokinin (CCK)
Receptors

A. CCK1 (CCK-A) Receptors

1. CCK1 Receptor Clones. The size of the CCK1 re-
ceptor demonstrated by ligand affinity crosslinking
studies varied depending on the ligand, the crosslinking
reagent, the species, and the tissue expressing the CCK
receptor (Svoboda et al., 1982; Rosenzweig et al., 1983;
Miller, 1984; Fourmy et al., 1987; Pearson and Miller,
1987; Pearson et al., 1987a,b; Shaw et al., 1987; Schjold-
ager et al., 1988; Powers et al., 1991). In rat pancreatic
acinar cells, the CCK1 receptor was found to be an 85- to
95-kDa, N-linked glycoprotein with a 42- to 44-kDa pro-
tein core.

The CCK1 receptor was purified to homogeneity from
rat pancreas. The purified receptor had a molecular
mass of 85 to 95 kDa consistent with previous crosslink-
ing studies (Wank et al., 1992a). Microsequencing of five
peptide products derived from either enzymatic diges-
tion or chemical cleavage of the protein receptor allowed
the design of degenerate oligonucleotide primers for
cloning the cDNA of the CCK1 receptor from a rat pan-
creatic cDNA library. The deduced sequence of the rat

CCK1 receptor corresponds to a 429-amino-acid protein
with a calculated molecular mass of 48 kDa. Hydropathy
analysis predicts seven transmembrane-spanning do-
mains (TM) as expected for a member of the G protein-
coupled receptor (GPCR) superfamily (Dohlman et al.,
1991; Fig. 2). The sequence contains at least three con-
sensus sites for N-linked glycosylation (Asn-X-Ser/Thr),
consistent with the heavy and variable degree of glyco-
sylation reported using ligand-affinity crosslinking tech-
niques (de Weerth et al., 1993b). The CCK1 receptor has
three consensus sequence sites for protein kinase C
(PKC) phosphorylation in the third intracellular loop
(Graff et al., 1989), consistent with previous data show-
ing that CCK-8- and 12-O-tetradecanoylphorbol-13-ace-
tate-stimulated phosphorylation of serine and threonine
residues involves predominantly the third intracellular
loop and to a minor extent the cytoplasmic tail of the rat
pancreatic CCK1 receptor (Kawano et al., 1992; Ozcelebi
and Miller, 1995). In addition, there are conserved cys-
teines in the first and second extracellular loops (ECLs)
of both CCK1 and CCK2 receptors (Figs. 2 and 3), which
may form a disulfide bridge required for stabilization of
their tertiary structure (Silvente-Poirot et al., 1998), and
another cysteine in the C terminus may serve as a mem-
brane-anchoring palmitoylation site (O’Dowd et al.,
1988; Ovchinikov et al., 1988).

The CCK1 receptor cDNA has subsequently been
cloned from guinea pig gallbladder, pancreas, and gas-
tric chief cell (de Weerth et al., 1993b), human gallblad-
der (de Weerth et al., 1993a; Ulrich et al., 1993), and
rabbit gastric (Reuben et al., 1994) cDNA libraries using
either low-stringency hybridization or polymerase chain
reaction methods. The CCK1 receptor is highly con-
served among these species with an overall amino acid
homology of 80% and a pairwise amino acid sequence
identity of 87 to 92% in humans, guinea pig, rat, and
rabbit (Table 1).

2. Antagonists of CCK1 Receptors. Several structur-
ally different CCK1 receptor antagonists have been syn-
thesized. They belong to various series of chemicals,
including dipeptoid, benzodiazepine, pyrazolidinine, and
amino acid derivatives, and have both excellent selectiv-
ity and high affinity for CCK1 receptors.

The first CCK antagonists were derived from a natu-
rally occurring benzodiazepine, asperlicin (Table 2),
which has been isolated from the fungus Aspergillus
alliaceus (Chang et al., 1985). The demonstrated high in
vitro and in vivo potency of asperlicin at CCK1 receptors
conferred clear advantages over previously reported
CCK antagonists as a tool for investigation of the phys-
iological and pharmacological actions of CCK. The first
analogs of asperlicin were designed to assess which
structural features of asperlicin could be modified to
further enhance its CCK inhibitory potency without
compromising its CCK1 selectivity. Unfortunately, this
approach failed to overcome the key defects of asperlicin
(Bock et al., 1986). Interestingly, asperlicin contains
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elements of the 1,4-benzodiazepine ring system found in
antianxiety agents such as diazepam. On the other
hand, several studies support the concept that the nat-
ural ligand for the antianxiety benzodiazepine receptor
is a peptide (Guidotti et al., 1983; Alho et al., 1985),
suggesting that the 5-phenyl-1,4-benzodiazepine ring is
in fact a chemical structure that recognizes a peptide
receptor. This explains why the 5-phenyl-1,4-benzodiaz-
epine ring was proposed as the basis for the design of
improved CCK receptor antagonists (Evans et al., 1986).
Indeed, the 3-amino-5-phenyl-1,4-benzodiazepin-2-one
derivatives, typified by L-364,718 (MK-329, devazepide;
Tables 2 and 3), remained for several years the most
potent CCK antagonists described with a good selectiv-
ity for CCK1 receptors (IC50 CCK2/CCK1 5 3750).

Various tricyclic 1,4-benzodiazepine derivatives were
also developed. On the basis of structure-activity relation-
ship studies, as well as the stability and availability of the
starting materials of those compounds, (S)-N-[1-(2-
fluorophenyl)-3,4,6,7-tetrahydro-4-oxo-pyrrolo[3,2,1-
jk][1,4]benzodiazepin-3-yl]-1H-indole-2-carboxamide (FK-
480; Satoh et al., 1994; Tables 2 and 3) was selected as a
candidate for further evaluation. The results obtained
showed that FK-480 is a highly selective and potent CCK1

receptor antagonist (Akiyama and Otsuki, 1994; Ito et al.,
1994a).

Several other potent and selective antagonists of the
CCK1 receptor have been described, including glutamic
acid derivatives such as loxiglumide (CR-1505) or lorglu-
mide (CR-1409; Makovec et al., 1985; Table 2), and partial
sequences of the C-terminal region of CCK. The dipeptide,
N-tert-butyloxycarbonyl-aspartyl-phenylalaninamide
(Boc-Asp-Phe-NH2), representing the two-amino-acid C-
terminal fragment common to both CCK and gastrin, is a
low-affinity partial agonist at CCK2 receptors but has no
activity at CCK1 receptors. This selectivity is abolished by
removal of the C-terminal amide. Replacement of the N-
tert-butyloxycarbonyl group in this dipeptide with an ana-
log, the 2-naphthalene sulfonyl group, gave 2-naphthale-
nesulfonyl 1-aspartyl-(2-phenethyl)amide (2-NAP; Tables
2 and 3), which behaves as a competitive antagonist at
CCK1 receptors. Interestingly, this compound has a 300-
fold greater affinity for CCK1 than CCK2 receptors (Hull et
al., 1993).

On the other hand, further development of “dipep-
toids”, initially characterized as CCK2 receptor antago-
nists (see below), led to a molecule that has a 100-fold
selectivity for the CCK1 receptor, where it acts as a

FIG. 2. Schematic representation of the rat CCK1 receptor showing the postulated transmembrane topology, sites for putative NH2-linked
glycosylation (tridents), serine and threonine phosphorylation by PKC and protein kinase A (PO3), and conserved cysteines in the first and second
ECLs, possibly forming a disulfide bridge, and a possible palmitoylated conserved cysteine in the cytoplasmic tail. NH2O, N terminus; COOHO, C
terminus.
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potent competitive antagonist (PD-140,548; Boden et al.,
1993).

Several years ago, synthetic peptides with CCK1 recep-
tor antagonist properties were described (Lignon et al.,
1987). One of these compounds, designated JMV-179
[Tyr(SO3H)-Ahx-Gly-D-Trp-Ahx-Asp-phenylethylester],
corresponds to the C-terminal heptapeptide of CCK in
which the phenylalamide and the L-tryptophan residues
were substituted by a phenylethyl ester and a D-trypto-
phan, respectively. In addition, to protect the peptide
against oxidation, the two methionines were replaced by a
6-aminohexanoic acid (Ahx) residue. The pharmacological

results obtained demonstrated that JMV-179 is a full
CCK1 receptor antagonist. In contrast, JMV-180 [Boc-
Tyr(SO3H)-Nle-Gly-Trp-Nle-Asp-phenylethylester] ap-
peared to be an agonist of the stimulatory phase of the
amylase release by pancreatic acini (low concentration
range) and an antagonist of the inhibitory phase (high
concentrations; Galas et al., 1988).

A new serine derivative, (R)-1-[3-(3-carboxypyridine-2-
yl)-thio-2-(indol-2-yl)carbonylamino]propionyl-4-diphenyl-
methylpiperazine (TP-680)] has been recently developed
(Akiyama et al., 1996; Tables 2 and 3). This compound
showed approximately 2 and 22 times greater selectivity
for CCK1 receptors relative to CCK2 receptors than
L-364,718 and loxiglumide, respectively. Pharmacological
data showed that TP-680 is a selective and irreversible
antagonist of CCK1 receptors (Akiyama et al., 1996).

Other CCK1 receptor antagonists have been devel-
oped, such as T-0632 (Tables 2 and 3), which is a novel
nonpeptide and water-soluble compound that inhibits
the specific binding of 125I-CCK-8 to rat CCK1 receptor
in a concentration-dependent and competitive manner.
The Ki value of T-0632 for the CCK1 receptor, 0.24 nM,
is 23,000-fold less than its Ki value (5,600 nM) for the
CCK2 receptor (Taniguchi et al., 1996).

FIG. 3. Schematic representation of the rat CCK2 receptor showing the postulated transmembrane topology, sites for putative NH2-linked
glycosylation (tridents), serine and threonine phosphorylation by PKC and protein kinase A (PO3), and conserved cysteines in the first and second
ECLs, possibly forming a disulfide bridge, and a possible palmitoylated conserved cysteine in the cytoplasmic tail. NH2O, N terminus; COOHO, C
terminus.

TABLE 1
SwissProt accession numbers for the cloned receptors from various

species

Receptor Species Accession No.

CCK1 Human P32238
Rat P30551
Guinea pig Q63931

CCK2 Human P32239
Mouse P56481
Rat P30553
Bovine P79266
Dog P30552
Rabbit P46627
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Interest in nonpeptide CCK receptor-selective ligands
has directed efforts toward the incorporation of confor-
mationally restricted structures as spacers between Trp
and Phe residues in the sequence of the CCK2 receptor
endogenous ligand CCK-4 (Trp-Met-Asp-Phe-NH2).
Thus, recently, a new series of CCK-4 restricted analogs
with a 3-oxoindolizidine ring were synthesized. The
most remarkable results were obtained with
IQM-95,333 (Tables 2 and 3), which displays a CCK1

receptor affinity (Ki 5 0.62 nM) similar to that of
L-364,718, but with a much higher selectivity (Ki
CCK2/Ki CCK1 . 8000; Martin-Martinez et al., 1997).

Another CCK1 receptor antagonist, SR-27,897 (Tables
2 and 3), which is chemically unrelated to peptoids,
benzodiazepines, or glutamic acid derivatives, has been
developed. This compound was obtained by optimization
of a lead compound discovered through the random
screening of a large chemical library. SR-27,897 is a

TABLE 2
CCK1 receptor antagonists

Devazepide (L-364,718), (3S)-(2)-N-(2,3 dihydro-1-methyl-2-oxo-5-phenyl-1 H-1,4-benzodiazepine-3-yl)-1H-indole-2-carboxamide; lorglumide, (6)-4-[(3,4-dichlorobenzoyl)amino]-
5-(di-n-pentylamino)-5-oxopentanoic acid; loxiglumide, (6)-4-[(3,4-dichlorobenzoyl)amino]-5-(N-(3-methyoxypropyl)-N-pentylamino]-5-oxopentanoic acid; SR 27897, 1-[[2-(4-
(chlorophenyl)thiazol-2-yl)aminocarbonyl]indolyl]acetic acid; IQM-95,333, (4aS,5R)-2-benzyl-5[N-(tert-butoxycarbonyl)-L-tryptophyl]amino-1,3-dioxoper-hydropyrido[1,2-
c]pyrimidine; FK-480, (S)-N-[1-(2-fluorophenyl)-3,4,6,7-tetrahydro-4-oxo-pyrrolo[3,2,1-jk][1,4]benzodiazepin-3-yl]-1H-indole-2-carboxamide; 2-NAP, 2-naphthalenesulfonyl-L-
aspartyl-(2-phenethyl)amide; T-0632, sodium (S)-3-[1-(2-fluorophenyl)-2,3-dihydro-3-[(3-isoquinolinyl-carbonyl)amino]-6-methoxy-2-oxo-1H-indole]propanoate; TP-680, (R)-1-[3-[(3-
carboxypyridin-2-yl)thio]-2-[(indol-2-ylcarbonyl)amino]propionyl]-4-(diphenylmethyl)piperazine; PD-140,548, N-(a-methyl-N-[(tricyclo[3.3.1.13,7]dec-2-yloxy)carbonyl]-L-tryptophyl]-D-3-
(phenylmethyl)-b-alanine.
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highly potent (Ki 5 0.2 nM) and selective (CCK2/CCK1
IC50 5 800) antagonist of CCK1 receptors (Gully et al.,
1993).

3. Agonists of CCK1 Receptors. Only a few compounds
have been reported to be CCK1-selective agonists; most of
them are tetrapeptides, hexapeptides, and benzodiazepine
derivatives.

Two series of CCK analogs have been developed. One
series, exemplified by A-71378 [des-NH2-Tyr(SO3H)-Nle-
Gly-Trp-Nle-(NMe)Asp-Phe-NH2], contains an (NMe)Asp

residue that is critical for CCK1 receptor selectivity (Hol-
laday et al., 1992). The other series derived by replacement
of the methionine residue of Boc-CCK-4 (Boc-Trp-Met-Asp-
Phe-NH2) with side chain-substituted Lys derivatives:
Boc-Trp-Lys(X)-Asp-(NMe)Phe-NH2, such as A-71623 (X 5
o-toluylaminocarbonyl [Tac]) and A-70874 (X 5 p-hydroxy-
cinnamoyl [Hyc]; Lin et al., 1991; Tables 4 and 5). Explo-
ration of this tetrapeptide series continued through the
examination of the effects of N-methylation at the Asp
residue. The results obtained showed that analogs contain-
ing either (NMe)Asp or (NMe)Asp-(NMe)Phe are highly
potent (IC50 values in the nanomolar range) and selective
CCK1 receptor agonists (Holladay et al., 1992).

The sulfate ester of CCK-8 borne by the tyrosine res-
idue is a critical determinant of the biological activity of
this peptide. To increase the stability of this molecule,
the sulfated tyrosine has been replaced by a synthetic
amino acid (LD)-Phe(p-CH2SO3Na) in which the OSO3H
group was replaced by the nonhydrolyzable CH2SO3H
group. The biological activity of the new derivative (LD)-
Phe(p-CH2SO3Na)-Nle-Gly-Trp-Nle-Asp-Phe-NH2 dis-
plays high affinity for CCK1 and CCK2 receptors (nano-
molar range; Marseigne et al., 1989).

In the hexapeptide series, it has also been reported
that replacement of Asp-Tyr(SO3H) of CCK-8 with
Hpa(SO3H) (Hpa is 4-hydroxyphenylacetyl) and
N-methylation of Phe do not diminish the affinity for
CCK1 or CCK2 receptors (Pierson et al., 1997). Inversion
of the chirality of Asp7 in conjunction with N-methyl-
ation of Phe8 produces a compound [Hpa(SO3H)-Met-
Gly-Trp-Met-D-Asp-MePhe-NH2] that exhibits high af-
finity and 2100-fold selectivity for CCK1 receptors.
Moreover, moving the N-methyl group from Phe to Asp
decreased the affinity for CCK2 receptors without affect-
ing that for CCK1 receptors, giving a compound
Hpa(SO3H)-Nle-Gly-Trp-Nle-MeAsp-Phe-NH2 (ARL-
15849; Tables 4 and 5) with a 6600-fold higher selectiv-
ity for the latter receptors (Pierson et al., 1997).

Recently, a series of 1,5-benzodiazepines acting as
CCK1 receptor agonists in vitro and in vivo were discov-
ered. Potency within this series was modulated by sub-
stituents on the N1-anilinoacetamide moiety (Aquino et
al., 1996), with substitution and/or replacement of the
C3-position phenylurea moiety (GW5823, GW7854;
Hirst et al., 1996; Willson et al., 1996; Henke et al., 1997;
Tables 4 and 5).

TABLE 4
CCK1 receptor agonists

des-NH2-Tyr(SO3H)-Nle-Gly-Trp-Nle-(NMe)Asp-Phe-NH2 A-71378
Boc-Trp-Lys(o-tolylaminocarbonyl)-Asp-MePhe-NH2 A-71623

Boc-Trp-Lys(p-hydroxycinnamoyl)-Asp-(NMe)Phe-NH2 A-70874
4-hydroxyphenylacetyl(SO3H)-Nle-Gly-Trp-Nle-(Me)Asp-Phe-NH2 ARL-15849

GW-5823

GW-7854

GW-5823, 2-[3-(1H-indazol-3-ylmethyl)-2,4-dioxo-5-phenyl-2,3,4,5-terahydro-
benzo[b][1,4]diazepin-1-yl]-N-isopropyl-N-(4-methoxyphenyl) acetamide; GW-7854,
3-[3-[1-[(isopropylphenylcarbamoyl)methyl]-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-
benzo[b][1,4]diazepin-3-yl]ureido] benzoic acid.

TABLE 3
Affinities of CCK1 receptor antagonists in brain and pancreas

membranes

Antagonist
Ki Selectivity

CCK2/CCK1
Reference

CCK1 CCK2

nM

L-364,718 0.1 375 3,750 Evans et al. (1986)
SR-27897 0.2 160 800 Gully et al. (1993)
IQM-93,333 0.6 .5,000 .8,000 Martin-Martinez et al. (1997)
PD-140,548 2.8a 260a 93 Boden et al. (1993)
FK-480 0.4a 72a 180 Ito et al. (1994a)
2-NAP 250 70,000 300 Hull et al. (1993)
T-0632 0.24 5,600 23,000 Taniguchi et al. (1996)
TP-680 1.2 1,812 1,510 Akiyama et al. (1996)

a IC50 value.

TABLE 5
Affinities of CCK1 receptor agonists in brain and pancreas membranes

Agonist
Ki Selectivity

CCK2/CCK1
Reference

CCK1 CCK2

nM

A-71378 0.5a 570a 1140 Holladay et al. (1992)
A-71623 3.7a 4500a 1200 Lin et al. (1991)
A-70874 4.2a 710a 170 Lin et al. (1991)
ARL-15849 0.03 224 6590 Pierson et al. (1997)
GW-5823 22.9a 1000a 50 Henke et al. (1997)

a IC50 value.
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B. CCK2 (CCK-B) Receptors

1. CCK2 Receptor Clones. Affinity crosslinking stud-
ies of the CCK2 receptor using 125I-[Leu or NLeu15]-
gastrin-2-17,disuccinimidyl suberate and either a 60 to
70% pure canine gastric parietal cell preparation or a
solubilized porcine gastric mucosal extract identified
two glycoproteins of 78 and 74 kDa, respectively (Svo-
boda et al., 1982; Baldwin et al., 1986; Chiba et al., 1988;
Baldwin, 1993).

Using low-stringency hybridization methods, the
CCK2 receptor cDNA was cloned from a rat pancreatic
acinar carcinoma cell line (AR4–2J) cDNA library
known to express CCK2/gastrin receptors. This cDNA
was shown to be identical with the CCK2 receptor cDNA
cloned from a rat brain cDNA library (Wank et al.,
1992b). At the same time, the gastrin receptor cDNA
was also cloned from a canine parietal cell cDNA library
using a COS cell plasmid expression approach (Kopin et
al., 1992). The rat and canine CCK2 receptors are 452
and 453 amino acids long, respectively, and share an
84% amino acid identity. This degree of homology is
consistent with interspecies variations of the same re-
ceptor and has been considered as an early indication
that the gastrin receptor is simply the CCK2 expressed
in the stomach (see below). Similar to the CCK1 recep-
tor, hydropathy analysis predicts seven TM domains as
expected of a member of the GPCR superfamily (Dohl-
man et al., 1991). The sequence contains at least three
consensus sites for N-linked glycosylation (Asn-X-Ser/
Thr), consistent with the heavy and variable degree of
glycosylation reported using ligand affinity crosslinking
techniques (Baldwin et al., 1986; Chiba et al., 1988;
Baldwin, 1993). Similar to the CCK1 receptor, there are
conserved cysteines in the first and second ECLs that
may form a disulfide bridge required for stabilization of
the tertiary structure (Silvente-Poirot et al., 1998), and
a cysteine in the C terminus of the receptor may serve as
a membrane-anchoring palmitoylation site (O’Dowd et
al., 1988; Ovchinikov et al., 1988; Fig. 3).

To date, the CCK2 receptor has been cloned through
low-stringency hybridization of cDNA libraries from var-
ious sources: rat brain and stomach, the pancreatic tu-
moral cell line AR4–2J (Wank et al., 1992b), human
brain (Pisegna et al., 1992; Ito et al., 1993; Lee et al.,
1993; Denyer et al., 1994) and stomach (Pisegna et al.,
1992), and guinea pig gallbladder and stomach (de We-
erth et al., 1993b). In addition, CCK2 receptor cloning
has been achieved from gastric enterochromaffin and
parietal cells and brain of Mastomys natalensis (Nakata
et al., 1992), calf pancreas (Dufresne et al., 1996), and a
rabbit genomic library (Blandizzi et al., 1994; Table 1).
The CCK2 receptor is highly conserved in humans, ca-
nine, guinea pig, calf, rabbit, M. natalensis, and rat,
with an overall amino acid identity of 72% and pairwise
amino acid sequence identities of 84 to 93%.

2. Gastrin Receptors Are CCK2 Receptors. Gastrin
receptors in the stomach and CCK2 receptors in the
brain were historically viewed as distinct types of CCK
receptors on the basis of their different relative affinities
for CCK and gastrin-like peptides (Menozzi et al., 1989).
However, the canine parietal cell gastrin receptor ex-
pressed in COS cells exhibits the same relative affinities
for CCK-8 and gastrin as those of native human and
guinea pig CCK2 receptors. The canine parietal gastrin
receptor was also considered to be a distinct receptor
because of a reversal in affinity for L-364,718 versus
L-365,260 in comparison with CCK2 receptors in the
brain of other species (Lotti and Chang, 1989). The basis
for this reversal has subsequently been ascribed to a
species-specific change of a single nucleotide resulting in
a single amino acid substitution (Leu355 in canine re-
ceptor versus Val319 in the human receptor) in TMVI
(Beinborn et al., 1993). Similar to the human, guinea
pig, and rat CCK2 receptors (Pisegna et al., 1992; Wank
et al., 1992b), cloning of the CCK2 receptor from canine
brain (Wank, 1995) resulted in a single cDNA identical
to that for the canine parietal cell gastrin receptor (Ko-
pin et al., 1992). Clearly, the identification of a single
CCK2 receptor-encoding gene through low- and high-
stringency hybridization of cDNA and genomic libraries
and Northern and Southern blot analyses in numerous
species indicates that gastrin receptors do correspond to
CCK2 receptors located in the gastrointestinal tract and
do not constitute a third type of CCK receptor (Wank,
1995).

3. Antagonists of CCK2 Receptors. Many attempts
have been made to develop potent and specific nonpep-
tide antagonists of CCK2/gastrin receptor. As a result,
several new chemical entities appeared, exhibiting high
selectivity for specific populations of CCK2/gastrin re-
ceptors. The various compounds under development be-
long to the following main chemical classes: amino acid,
benzodiazepine, dipeptoid, pyrazolidinone, and ure-
idoacetamides derivatives (for a review, see Makovec
and D’Amato, 1997).

Efforts were notably devoted to the design of an opti-
mized asperlicin structure. Because the asperlicin struc-
ture is composed of several heterocyclic domains, it was
hypothesized that alternative substructures embedded
within the molecular framework of this natural product
may provide a rational starting point for the design of
novel nonpeptide CCK receptor ligands. On this basis,
scientists at Eli Lilly Corp. developed a series of quina-
zoline derivatives by using a bond disconnection ap-
proach (Yu et al., 1991). A combination of the key frag-
ments of the Lilly and Merck series led to the
development of novel nonpeptide CCK2 receptor antag-
onists with substitution on the quinazolinone and phe-
nyl rings. Binding data for this class of compounds sug-
gest that the linker between these rings is a critical
determinant for CCK2 receptor-binding affinity. How-
ever, these new compounds have a low selectivity for
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CCK2 receptor (Padia et al., 1997). Indeed, the spatial
arrangement of the two moieties appears to be critical
for both potency and selectivity. The introduction of
ONHO as a linker significantly enhanced CCK2 recep-
tor-binding affinity and selectivity, providing com-
pounds with nanomolar binding affinity and good selec-
tivity (Ki CCK1/Ki CCK2 . 500). Moreover, these

compounds are active when administered per os (Padia
et al., 1998).

On the other hand, the moderate affinity of L-364,718
for CCK2 receptors suggested that the benzodiazepine
nucleus might also hold a key to selective ligands for
these receptors. The first compound of interest devel-
oped using this strategy was L-365,260 (Tables 6 and 7),

TABLE 6
CCK2 receptor antagonists

L-365,260, (3R)-(1)-N-(2,3-dihydro-1-methyl-2-oxo-phenyl-1H-1,4-benzodiazepin-3-yl)-N9-(3-methylphenyl)urea; YM-022, (R)-1-[2,3-dihydro-1-(29-methylphenacyl)-2-oxo-5-phenyl-1H-
1,4-benzodiazepin-3-yl]-3-(3-methyl-phenyl)urea; LY-288,513, (4S,5R)-N-(4-bromophenyl)-3-oxo-4,5-diphenyl-1-pyrazolidine carboxamide; RP-73870, {{[N-(methoxy-3-phenyl)-N-(N-methyl-
N-phenyl-carbamoylmethyl)-carbamoylmethyl]-3-ureido}-3-phenyl}-2-ethyl-sulfonate-(RS); PD-134,308, 4-{[2-[[3-(1H-indol-3-yl)-2-methyl-1-oxo-2-[[tricyclo-[3.3.1.13,7]-dec-2-yloxy)-
carbonyl]amino]propyl]amino]-1-phenyl-ethyl]amino}-4-oxo-[R-(Rp,Rp)]butanoic acid; RB 210, N-[N-[(2-adamantyloxy)carbonyl]-DL-a-methyltryptophanyl]-N-(2-
phenylethyl)glycine; compound 19 (Augelli-Szafran et al., 1996), 3-[2-(adamantan-2-yloxycarbonylamino)-3-(1H-indol-3-yl)-2-methylpropronyl-amino]-4-(4-fluorophenyl)butyric acid;
CP-212,454, N-tert-butyl-2-[3-(3-(3-chlorophenyl)ureido)-2-oxo-5-phenyl-8-methyl-2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl]ethanoic acid amide; L-740,093, N-[(3R)-5-(3-
azabicyclo[3.2.2]nonan-3-yl)-2,3-dihydro-1-methyl-2-oxo-1H-1,4-benzodiazepin-3-yl]-N9-(3-methylphenyl)urea; YF-476, (3R)-N-(1-(tert-butylcarbonylmethyl)-2,3-dihydro-2-oxo-5-(2-
pyridyl)-1H-1,4-benzodiazepin-3-yl)-N9-(3-(methylamino)phenyl)urea; CI-1015, tricyclo[3.3.1.13,7]dec-2-yl[1S-[1a(Sp)2b]-[2-[(2-hydroxycyclohexyl)amino]-1-(1H-indol-3-ylmethyl)-1-
methyl-2-oxoethyl]carbamate.
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which revealed to be the first potent and selective non-
peptide CCK2 receptor antagonist (Bock et al., 1989).
One factor that determined CCK receptor selectivity in
this series was the C3-stereochemistry of the benzodiaz-
epine ring system, with the (3R)-enantiomer generally
providing CCK2 receptor selectivity. Moreover, recent
studies have shown that the C5-phenyl moiety of the
core benzodiazepine structure could be replaced by C5-
cycloalkyl groups, a modification that retained CCK2
receptor affinity and selectivity. In particular, the C5-
cyclohexyl analog displayed subnanomolar affinity for
CCK2 receptors (IC50 5 0.28 nM), with improved selec-
tivity (Ki CCK1/Ki CCK2 5 6500) compared with
L-365,260 (Chambers et al., 1993).

A major drawback associated with these early benzo-
diazepine-derived CCK2 antagonists was their limited
bioavailability and inactivity via the oral route of admin-
istration. The incorporation of a (tert-butylcarbonyl)
methyl group at the 1-position (Semple et al., 1996a) or
a 2-pyridyl group at the 5-position (Semple et al., 1996b)
of the parent benzodiazepine structure provides a signif-
icant increase in absorption. Similar results have been
achieved through the incorporation of an amine-based
cationic solubilizing group within the benzodiazepine
framework, with a cyclic amine to form an amidino func-
tionality in the 5-position (L-740,093; Showell et al.,
1994; Tables 6 and 7). Other attempts to improve aque-
ous solubility included the introduction of acidic groups
(L-368,935 and L-369,466; Bock et al., 1994) or lipophilic
surrogates (Chambers et al., 1995) into the 3-position of
the aryl urea component of either the 1,4-benzodiazepin-
2-one parent system or closely related structures (CP-
212,454; Lowe et al., 1995; Tables 6 and 7). The opposite
strategy has also been used with the introduction of
basic amino substituents into the same region. YM022 is
the optimal structure of this new series, with subnano-
molar affinity for CCK2 receptors (Nishida et al., 1994).
Moreover, when these modifications are combined
within the same molecule, the resulting improvements
in the in vivo effects appear to be essentially additive, as
shown by the compound YF476 (Tables 6 and 7), which

has a good oral bioavailability in dogs (Semple et al.,
1997).

Other nonpeptide CCK2 receptor antagonists have
been developed, derived through rational design from
the CCK tetrapeptide (Hughes et al., 1990). This led to
tryptophan dipeptoid derivatives such as PD-134,308
(CI-988; Tables 6 and 7) with nanomolar affinity for
CCK2 receptors (Horwell, 1991; Horwell et al., 1991).
PD-134,308 exhibits a 1600-fold selectivity for CCK2
over CCK1 receptors. C-terminal modifications of this
compound led to molecules with subnanomolar affinity
for CCK2 receptors. For example, further attempts to
optimize the substitution on the phenyl ring led to a
compound 19, which has an extraordinarily high affinity
for the CCK2 receptor (IC50 5 0.08 nM) and a high
degree of selectivity (Ki CCK1/Ki CCK2 5 940; Augelli-
Szafran et al., 1996). A direct comparison of the struc-
ture of the dipeptoid derivatives showed that the size of
these molecules could be reduced to increase their li-
pophilicity. Such compounds have been synthesized, and
some of them have been found to be potent and selective
CCK2 receptor antagonists. Moreover, as expected, one
of them (RB 211) was shown to be more efficient in
crossing the blood-brain barrier than the parent com-
pounds (Blommaert et al., 1993) and devoid of the weak
CCK1 receptor agonist properties of dipeptoids (Höcker
et al., 1993; Ding et al., 1995). On the other hand, to
improve the properties of PD-134,308, numerous confor-
mational restrictions were introduced in its structure.
Unfortunately, neither N-terminal cyclization (Fincham
et al., 1992b), macrocyclization (Didier et al., 1992;
Bolton et al., 1993), nor rigidification of the amide bond
(Fincham et al., 1992a) led to any positive result. Only a
C-terminal cyclization of PD-134,308 derivatives, by
means of a tetrahydronaphtyl group, has been reported
to increase the affinity for CCK2 receptors (Higginbot-
tom et al., 1993). This approach has also been used for
compounds such as RB 210 (Tables 6 and 7), in which
C-terminal constraints can be easily introduced. Thus,
the b-carbon of the phenethyl side chain of RB 210 was
linked to the a-carbon bearing the carbonyl function, by
means of a methylene bridge. This resulted in the for-
mation of a proline ring (Bellier et al., 1997). The most
potent compounds of this new series had similar affini-
ties for CCK2 receptors as RB 210. Structure-affinity
relationships of this series indicated that lengthening of
the distance between the amide nitrogen atom and the
phenyl ring was of little importance, whereas the posi-
tion of the carboxylate group could not be modified.
Therefore, the pyrrolidine ring was replaced by piperi-
dine to slightly modify the possible orientation of the
aromatic moiety toward the carboxylate without violat-
ing any of the requirements previously established in
both linear and constrained series for the recognition of
CCK2 receptors. However, the resulting compounds be-
have as moderately potent CCK2 receptor antagonists
(Bellier et al., 1998).

TABLE 7
Affinities of CCK2 receptor antagonists in brain and pancreas

membranes

Antagonist
Ki Selectivity

CCK1/CCK2
Reference

CCK1 CCK2

nM

L-365,260 800 7 115 Lotti and Chang (1989)
PD-134,308 1,440 0.9 1,600 Horwell et al. (1991)
LY-288,513 11,600 31 370 Howbert et al. (1992)
RP-73,870 1,634 0.5 3,300 Pendley et al. (1995)
YM-022 150 0.1 1,500 Nishida et al. (1994)
RB-210 1,518 14 110 Blommaert et al. (1993)
CP-212,454 180 0.5 360 Lowe et al. (1995)
L-740,093 1,600 0.1 16,000 Patel et al. (1994)
YF-476 113a 0.2a 565 Semple et al. (1997)
CI-1015 2,900 3 967 Trivedi et al. (1998)

a IC50 value.
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As previously mentioned, the clinical development of
PD-134,308 (CI-988) was limited due to its poor bioavail-
ability, which was attributed to poor absorption and
efficient hepatic extraction. Scientists at Parke-Davis
also envisaged that reducing the molecular weight of the
parent compound would lead to better absorption. Thus,
they synthesized a series of analogs in which the key
a-methyltryptophan and adamantyloxycarbonyl moi-
eties, required for receptor binding, were kept intact and
the C terminus was extensively modified. These modifi-
cations led to compounds such as CI-1015 (Tables 6 and
7) for which the oral bioavailability in rat was improved
nearly 10-fold and the blood-brain barrier permeability
was also enhanced relative to CI-988 (Trivedi et al.,
1998).

Two other series have been described, leading to the
synthesis of derivatives that have both excellent selec-
tivity and high affinity for CCK2 receptors: the ureidoac-
etamide class of CCK2 receptor antagonists (RP-73,870;
Pendley et al., 1995) and the pyrazolidinones (LY-
288,513; Howbert et al., 1992; Tables 6 and 7). Develop-
ment of the latter series has been discontinued because
of adverse effects in preclinical toxicological studies. The
nonpeptide ureidoacetamides are potent and selective
ligands with nanomolar or subnanomolar affinities for
CCK2 receptors and a 100- to 1000-fold selectivity for
these receptors over CCK1 receptors. Despite its rela-
tively poor oral bioavailability, RP-73,870 was as potent
as other antiulcer compounds after oral administration
in a duodenal ulceration model (Pendley et al., 1995).

4. Agonists of CCK2 Receptors. Different strategies
have been followed to design potent and selective
agonists of CCK2 receptors. One of these was to pro-
tect CCK-8 [Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-
NH2] from degrading enzymes such as aminopeptidase
A (Migaud et al., 1996) and a thiol/serine protease
cleaving this peptide at the Met-Gly bond (Camus et al.,
1989; Rose et al., 1996). The biologically active
Boc[Nle28,31]CCK27-33 (BDNL; Ruiz-Gayo et al., 1985)
was used as the parent compound to design enzyme-
resistant analogs. In this compound, the major sites of
cleavage are at the Trp30/Nle31 and Nle28/Gly29 bonds.
BDNL is potentially resistant to aminopeptidase cleav-
age due to its tert-butyloxycarbonyl N-terminal-protect-
ing group (Ruiz-Gayo et al., 1985; Durieux et al., 1986a).

Thus, several enzyme-resistant BDNL analogs contain-
ing either a retro-inversion of the Nle28-Gly amide bond,
an (NMe)Nle31 residue, or a combination of these two
modifications have been synthesized (Charpentier et al.,
1988a). This led to BC 264 (Tables 8 and 9), a highly
potent CCK2 receptor agonist that exhibits about the
same affinity (Ki 5 0.1–0.5 nM) in all species (guinea
pig, rat, mouse, monkey, humans) and was at that time
the only systemically active CCK2 receptor agonist
(Charpentier et al., 1988a; Durieux et al., 1991). The
peptidase-resistant bioactive analog [3H]pBC264 was
also developed (Durieux et al., 1989) by replacing the
Boc group with a tritiated propionyl residue. The radio-
activity present in the mouse brain 15 min after i.v.
injection of the tritiated compound represented
1.6/10,000 of the total radioactivity injected. Moreover,
as shown by HPLC, [3H]pBC264 was very resistant to
metabolism, because more than 85% of the radioactivity
present in the brain corresponded to the intact molecule
(Ruiz-Gayo et al., 1990). On the other hand, despite its
intrinsic flexibility, CCK-8 was found through NMR to
exist preferentially under a folded form in aqueous so-
lution (Fournié-Zaluski et al., 1986) with a proximity
between Asp1 and Gly4. This property was used to syn-
thesize cyclic peptides through amide bond formation
between Asp1 or between a- or b-carboxyl group of Glu1
and Lys4 side chains, such as BC 254 and BC 197
(Tables 8 and 9), which were found highly potent and
selective CCK2 receptor agonists (Charpentier et al.,
1988b, 1989). Another nonsulfated CCK-8 analog,
[N-methyl-Nle28,31]CCK26-33 (SNF-8702; Tables 8 and
9), has also been described, which has about 4000-fold
greater affinity for CCK2 than for CCK1 receptors
(Knapp et al., 1990).

The role of the amino acid in position 31 of CCK-8 in
the recognition of CCK1 and CCK2 receptors was inves-
tigated through the replacement of Met31 by amino
acids with side chains of varying chemical nature. Thus,
the introduction of a Phe residue in position 31 in
Boc[Nle28,31]CCK27-33 slightly modified the affinity for
CCK2 receptor (Ki 5 3.7 nM) but led to a larger decrease
(Ki 5 220 nM) in the affinity for CCK1 receptors. A
similar discrimination was observed when the amino
acid in position 31 is an alanine residue (Marseigne et
al., 1988).

TABLE 8
CCK2 receptor agonists

Boc-D.Asp-Tyr(SO3H)-Nle-D.Lys-Trp-Nle-Asp-Phe-NH2 BC 197
Boc-Tyr(SO3H)-gNle-mGly-Trp-NMe(Nle)-Asp-Phe-NH2 BC 264

HOOC-CH2-CO-Trp-NMe(Nle)-Asp-Phe-NH2 RB 400
Asp-Tyr(SO3H)-(NMe)Nle-Gly-Trp-(NMe)Nle-Asp-Phe-NH2 SNF-8702

Boc-gD-Glu-Tyr(SO3H)-Nle-D.Lys-Trp-Nle-Asp-Phe-NH2 BC 254
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Because nonpeptide ligands have historically offered
greater opportunity for manipulation of both pharmaco-
dynamic (selectivity and efficacy) and pharmacokinetic
(oral bioavailability, duration) parameters, the develop-
ment of nonpeptidic CCK2 receptor selective agonists
endowed with good stability and bioavailability should
provide useful pharmacological tools and possibly ther-
apeutic agents. To design such derivatives, the C-termi-
nal tetrapeptide CCK-4 appeared to be a good molecule
to start with, because of its significant CCK2 receptor
affinity and selectivity, although it has been shown to
trigger panic attacks in humans (de Montigny, 1989;
Bradwejn et al., 1991b). Several modifications were
made to CCK-4, such as the N-terminal protection of the
tetrapeptide in Boc-CCK4 (Harhammer et al., 1991) or
modifications of the different amino acids such as the
replacement of Met by Nle or (NMe)Nle (Corringer et al.,
1993). Recent NMR and molecular dynamics studies
indicated that the CCK2 receptor-selective CCK-4 ana-
logs adopt an S-shaped conformation with a relatively
well-defined orientation of the side chains (Goudreau et
al., 1994). The same type of folded structures has been
reported for several potent agonists derived from CCK-4
and containing a [trans-3-propyl-L-proline] (Nadzan et
al., 1991), a diketopiperazine skeleton (Shiosaki et al.,
1990), or a [(alkylthio)proline] residue (Kolodziej et al.,
1995). With this template, other cyclic CCK-4 analogs
have been synthesized in which the Trp-Met dipeptide
was changed to a diketopiperazine moiety resulting from
a cyclization between Nle and N-substituted (D)Trp res-
idues and coupled with a small linker to Asp-Phe-NH2
(Weng et al., 1996a). Moreover, the side chain of Nle in
the compound Boc-Trp-(NMe)Nle-Asp-Phe-NH2 to-
gether with the N terminus of Trp appeared to be good
candidates for another possible cyclization. Thus, cyclic
compounds were designed through molecular modeling
to mimic the proposed biologically active conformation of
these CCK-4 analogs. The goal of this study was to
stabilize the bioactive conformation of CCK2 receptor
agonists to aid in the design of nonpeptide ligands. This
led to the development of macrocyclic constrained
CCK-4 analogs that are endowed with agonist properties
and able to cross the blood-brain barrier (Blommaert et
al., 1997).

Selective and peptidase-resistant CCK2 receptor li-
gands that derive from Boc-[Nle31]CCK30-33 through

the incorporation of non-natural hydrophobic amino ac-
ids have also been developed (Weng et al., 1996b).
Among these compounds, Boc-[Phg31,Nal33]CCK30-33
proved to be a full agonist at rat hippocampal CCK2
receptors. Moreover, it appeared that modifications of
the hydrophobic and steric character of either the C- or
N-terminal amino acid substituents of CCK-4 deriva-
tives could affect the agonist or antagonist profile of
these peptides. This was shown by the fact that the
agonist Boc-[Phg31,Nal33]CCK30-33 could be chemically
converted to an antagonist through the addition of two
alkyl groups on the terminal CONH2 (Weng et al.,
1996b).

Very recently, a new series of highly potent and selec-
tive CCK2 receptor agonists were developed (Million et
al., 1997). Boc-Trp-(NMe)Nle-Asp-Phe-NH2, the C-ter-
minal tetrapeptide of BC 264, was shown to have a high
affinity and to behave as a specific agonist at CCK2
receptors and to adopt the S-shaped preferential confor-
mation. To determine the essential structural compo-
nents of specific CCK2 receptor agonists, a step-by-step
lengthening of the C-terminal tetrapeptide of BC 264
was carried out. Various diacidic moieties, such as ma-
lonate or succinate residues, were coupled to the N-
terminal portion of the tetrapeptide, leading to RB 400
[HOOC-CH2-CO-Trp-(NMe)Nle-Asp-Phe-NH2] and RB
403 (Tables 8 and 9). RB 400 was also derivatized under
its benzylamide and methyl ester forms. Compounds
that belong to the RB 400 series possess high affinities
for the CCK2 receptor, with a subnanomolar affinity (Ki
5 0.42 nM) being obtained in case of RB 400 itself
(Million et al., 1997).

III. Molecular Biology of CCK Receptors

A. CCK Receptor Gene Structure

The genes encoding the CCK1 receptor (Miller et al.,
1995; Wank, 1995; Inoue et al., 1997) and the CCK2
receptor (Song et al., 1993) in humans are organized in
a similar manner consisting of five exons and four in-
trons. The receptor genes have homologous exon/intron
splice sites with exon 1 coding for the extracellular N-
terminal sequence, exon 2 coding for the sequence from
the beginning of TMI to the first part of TMIII, exon 3
coding for the sequence from TMIII to the beginning of
TMV, exon 4 coding for the sequence from TMV to the
first fourth of the third intracellular loop, and exon 5
coding for the remainder of the receptor (Fig. 4). The
genes for the rat (Takata et al., 1995) and mouse (La-
course et al., 1997) CCK1 receptors and rabbit (Blandizzi
et al., 1994) and mouse (Nagata et al., 1996) CCK2
receptors are organized similarly to those for humans.
This high degree of conservation of the sequence and
organization between CCK1 and CCK2 receptor genes
and the fact that the brain and pancreas of the bullfrog
Rana catesbeiana and Xenopus laevis express only one
CCK receptor (Vigna et al., 1984, 1986) suggest that the

TABLE 9
Affinities of CCK2 receptor agonists in brain and pancreas membranes

Agonist
Ki Selectivity

CCK1/CCK2
Reference

CCK1 CCK2

nM

BC 197 2900 150 20 Charpentier et al. (1989)
BC 264 78 0.1 780 Charpentier et al. (1988b)
RB 400 .3000 0.42 .7000 Million et al. (1997)
SNF-8702 3800 0.9 4000 Knapp et al. (1990)
BC 254 2500 0.56 4500 Charpentier et al. (1989)
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CCK1 and CCK2 receptor genes evolved sometime after
amphibia from duplication of a common ancestral gene
(as for the gene encoding the receptor ligands, CCK and
gastrin). This concept is further supported by the clon-
ing of a gene encoding a CCK receptor from a X. laevis
brain cDNA library. This receptor is expressed in brain
and stomach but is undetectable in pancreas. The de-
duced amino acid sequence from this gene has 55 and
56% amino acid identity with the human CCK1 and
CCK2 receptors, respectively. This receptor expressed in
COS-7 cells has a CCK1 receptor type pharmacological
profile (sulfated CCK . gastrin-17 . nonsulfated CCK-
8 . CCK-4) like that of the native receptor in X. laevis
brain and pancreas (Vigna et al., 1986; Schmitz et al.,
1996) but with a relatively high affinity for sulfated
gastrin, as expected for a CCK2 receptor. Nevertheless,
like typical CCK1 receptors, the CCK receptor obtained
from the X. laevis brain cDNA library has a higher
affinity for L-364,718 than for L-365,260, and it is not
recognized by CAM 1714 or CAM 1028 (Schmitz et al.,
1996).

Alternative splicing of exon 4 of the human CCK2
receptor gene results in two CCK2 receptor transcripts
that differ by a block of five amino acids within the third
intracellular loop (Song et al., 1993; Fig. 4). The shorter
transcript is largely predominant in stomach, although
its relative distribution in individual cell types has not
been examined. To date, the physiological relevance of
the two isoforms of the human CCK2 receptor is not
known. A comparison of the shorter and longer isoforms
revealed no significant differences in agonist affinity
and signal transduction (Ito et al., 1993, 1994b; Wank et
al., 1994b).

Another splice variant of the human CCK2 receptor
transcript, designated DCCK2 receptor, which differs at
the 59 end from the CCK2 receptor transcript described
earlier, was discovered using a polymerase chain reac-
tion-based cloning strategy (Miyake, 1995). DCCK2 re-
ceptor encodes an N-terminally truncated receptor that
starts with the methionine Met67 in TMI and is other-
wise identical in the remaining sequence. The gene
structure is similar to that previously reported for the
human CCK2 receptor (Song et al., 1993) except that the
first intron was of ;10 kb (compared with 1.177 kb) and
contained the sequence for the alternative first exon
that makes up the 59 untranslated region of DCCK2
receptor (Fig. 4). The first methionine of exon 2, which is
common to both CCK2 and DCCK2 receptors, serves as
the translational initiation site for the DCCK2 receptor.
DCCK2 receptor transiently expressed in COS-7 cells
has a ;3-fold lower affinity for CCK-8 and a ;30-fold
lower affinity for gastrin compared with the CCK2 re-
ceptor, but its affinity for the antagonists L-365,260 and
L-364,718 is unchanged. Both CCK2 and DCCK2 recep-
tor transcripts have been detected in brain, stomach,
and pancreas through the use of reverse transcription-
polymerase chain reaction (Miyake, 1995). According to
the guidelines defined by the IUPHAR committee, be-
cause these splice variants do not appear to be major
variants, they are not indicated by subscript lowercase
letters.

On the other hand, Jagerschmidt et al. (1994) isolated
several CCK2 receptor mRNA isoforms from rat brain
tissue, including a truncated mRNA species. Unspliced
precursor mRNA and the mature form were identified in
the cerebral cortex, hypothalamus, and hippocampus in

FIG. 4. Schematic representation of genes encoding human CCK1 and CCK2 receptors. Shown are position and size of the exons (shaded boxes) and
introns (lines) comprising the genes for the CCK1 and the CCK2 receptors; smaller arabic numbers represent size of each exon and intron in base pairs.
Roman numerals refer to putative transmembrane-spanning regions encoded within each exon. ATG and TGA, putative start and stop codons,
respectively. CCK2 receptor gene: the second splice variant (short form) differs only in the size of exon 4, in which a sequence is absent compared with
long form, corresponding to a block of five amino acids within the third intracellular loop. The third splice variant encodes an N-terminally truncated
receptor. The gene structure is similar, except that there is an alternative first exon (exon 1b) that makes up the 59 untranslated region of this
truncated receptor.
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apparently differing proportions according to the region
examined, suggesting that the expression of the CCK2
receptor could be modulated at a post-transcriptional
level. Thus, although five precursor mRNAs were found
in the cerebral cortex and the hypothalamus, only one
fully processed messenger was detected in the hip-
pocampus. In the case of the cerebellum, only a com-
pletely unspliced mRNA form was found, which is in
agreement with previous studies showing that CCK2
receptor-binding sites are not expressed in this struc-
ture in the rat (Pélaprat et al., 1987).

B. Chromosomal Localization of CCK Receptor Genes

The human CCK1 receptor gene has been localized to
chromosome 4 using a panel of human/hamster hybrid
DNAs (Huppi et al., 1995). The mouse CCK1 receptor
gene has been mapped to a syntenic region on chromo-
some 5 using a wild 3 inbred backcross panel of mice
[(BALB/cAN 3 Mus spretus) F1 3 BALB/cAN] (Huppi et
al., 1995). This region of mouse chromosome 5 is syn-
tenic with human chromosome 4p16.2-p15.1 (Huppi et
al., 1995). The human CCK1 receptor was further
mapped to 4p15.1-p15.2 using fluorescence in situ hy-
bridization and physically mapped between the markers
AFMb355ya5 and AFMa283yh5 (Inoue et al., 1997). The
rat CCK1 receptor gene has been localized to a syntenic
region on chromosome 14 by fluorescence in situ hybrid-
ization (Takiguchi et al., 1997).

The human CCK2 receptor has been localized to chro-
mosome 11 in humans and a syntenic region on chromo-
some 7 in the mouse using a panel of human/hamster
hybrid DNAs (Huppi et al., 1995). Fluorescence in situ
hybridization of human metaphase chromosomal
spreads has further localized the human CCK2 receptor
gene to the distal short arm of chromosome 11 (11p15.4;
Song et al., 1993; Zimonjic et al., 1994). The colocaliza-
tion of the CCK1 receptor gene with the dopamine D5
receptor gene at 4p15.1-p15.3 (Sherrington et al., 1993)
and of the CCK2 receptor gene with the gene encoding
the dopamine D4 receptor at 11p15.4-p15.5 (Gelernter et
al., 1992; Pisegna et al., 1992) is especially interesting in
view of the coexistence of CCK and dopamine in mid-
brain neurons and the regulation of mesolimbic dopami-
nergic pathways by both CCK1 and CCK2 receptors
(Crawley and Corwin, 1994).

C. Animal Models without Detectable Levels of CCK
Receptors

An inbred strain of Long Evans rats, the Otsuka Long-
Evans Tokushima Fatty rats, that is considered to be a
model for late-onset non-insulin-dependent diabetes
mellitus, was discovered to have no detectable levels of
CCK1 receptor gene expression. Subsequent cloning of
their CCK1 receptor gene revealed a deletion of 6847 bp
encompassing the promoter region and first and second
exons (Takiguchi et al., 1997). Although these rats are
known to have polygenic abnormalities, the presence of

several metabolic and behavioral abnormalities has
been attributed to the loss of CCK1 receptor expression.

Targeted disruption of the CCK2 receptor gene has
been achieved in mice (Nagata et al., 1996). Homozygous
mutant mice were viable and fertile and appeared to be
grossly normal into adulthood (Langhans et al., 1997).
CCK2

2/2 mutant mice have much fewer gastric parietal
and ECL cells than so wild-type animals, which is in line
with the growth-promoting effects of gastrin at the
CCK2 receptor previously seen in patients with hyper-
gastrinemia due to the Zollinger-Ellison syndrome. Also,
as expected, these mice were hypochlorhydric and hy-
pergastrinemic (Nagata et al., 1996). Together, these
results demonstrate the importance of the CCK2 recep-
tor in maintaining the normal cellular composition and
function of the gastric mucosa.

Moreover, the physiological implication of CCK2 re-
ceptor can now be further investigated in CCK2 recep-
tor-deficient mice obtained through gene targeting. The
first experiments reported with this interesting model
show a critical role of CCK2 receptors in memory pro-
cess. CCK2 receptor-deficient mice have an impairment
of performance in the memory task (Sebret et al., 1999;
for more details, see VIIB4. CCK and Memory Process-
es).

IV. Receptor Structure/Function Studies

A. Signal Transduction

1. CCK1 Receptors. The modulation of CCK1 receptor
affinity by guanine nucleotides in early studies sug-
gested that they belong to the GPCR superfamily. This
has been confirmed through the cloning of CCK1 recep-
tors (Wank et al., 1992a), which revealed their seven-
transmembrane receptor structure.

In the pancreas, CCK is well known to be a major
regulatory peptide that stimulates digestive enzyme se-
cretion. The mode of action of CCK has been extensively
explored. CCK-stimulated enzyme secretion is believed
to be initiated by the binding of CCK to CCK1 receptors
localized on pancreatic acinar cells. Furthermore, it has
been shown that the breakdown of phosphatidylinositol
4,5-biphosphate, which thereby produces both diacyl-
glycerol and inositol trisphosphate (IP3), is activated by
CCK1 receptor stimulation. Subsequent activation of
Ca21 phospholipid-dependent protein kinase by diacyl-
glycerol and intracellular Ca21 mobilization induced by
IP3 have been considered to act synergistically to cause
digestive enzyme secretion (Pandol et al., 1985). The
insensitivity of CCK1 receptor inositol phosphate signal-
ing to pertussis toxin suggests that its couples through
the Gq family of G proteins (Pang and Sternweiss, 1990).
Recently, a study using both phospholipase C (PLC) and
G protein a-subunit-specific antibodies indicated that
both Gq and G11a are present in pancreas and that the
CCK1 receptor couples to Gq or G11 to activate PLC-b1 in
pancreatic cell membranes (Piiper et al., 1997).
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On the other hand, it has been demonstrated in rat
pancreatic acini that the CCK1 receptors are coupled to
the phospholipase A2 (PLA2)/arachidonic acid pathways
to mediate Ca21 oscillations and amylase secretion
(Yule et al., 1993; Yoshida et al., 1997). Nevertheless,
other studies have shown that there are at least two
pathways responsible for the increased production of
arachidonic acid in response to CCK1 receptor stimula-
tion. One is the sequential effects of phospholipase C
(PLC) and diglyceride lipase on phosphatidylinositol,
and the other involves the action of the PLA2 effect on
phosphatidylcholine. Both pathways cause stimulation
of amylase release (Pandol et al., 1991). In addition to
the activation of the PLC and PLA2 signal-transduction
pathways, CCK1 receptor stimulation can lead to an
increase in the adenylyl cyclase signal-transduction cas-
cade (Marino et al., 1993).

Thus, CCK1 receptor is capable of coupling to both
PLC and adenylyl cyclase at physiological concentra-
tions in native cells. It is not clear whether this is a
result of the independent coupling of CCK1 receptor to
Gs and Gq or simply the result of G protein bg-subunit
activation of an isotope of adenylyl cyclase. A study
using a chimeric CCK receptor in which the first intra-
cellular loops between CCK1 and CCK2 receptors were
exchanged showed that Arg68 and Asn69 belonging to
the loop of CCK1 receptor are important for the stimu-
latory coupling of this receptor with adenylyl cyclase but
are not involved in its coupling with Gq. These results
support the idea that the CCK1 receptor is directly cou-
pled with both Gs and Gq (Wu et al., 1997).

Recent studies (for reviews, see Müller and Lohse,
1995; Daaka et al., 1997) have shown that some GPCRs
use the same effectors as those of the tyrosine kinase
receptor pathway [e.g., Shc (adapter protein)/growth fac-
tor receptor-bound protein 2/product of son of sevenless
(SOS)], resulting in Ras and mitogen-activated protein
kinase (MAPK) activation and leading to expression of
transcriptional factors, such as c-myc, c-jun, and c-fos. It
was recently shown that MAPKs and c-Jun NH2-termi-
nal kinases (JNKs, which phosphorylate serine residues
of c-Jun) are rapidly activated by CCK-8 in rat pancreas
both in vitro and in vivo (Dabrowski et al., 1996a,b;
Tateishi et al., 1998). These results suggest that CCK
might stimulate cell proliferation via its action at CCK1
receptors. Moreover, the activation of both MAPKs and
JNKs may be of importance in the early pathogenesis of
acute pancreatitis (Dabrowski et al., 1996a). The mech-
anism by which the Gq protein-coupled CCK receptor
activates Ras is not well understood. Results obtained by
Dabrowski et al. (1996b) suggest that formation of Shc/
growth factor receptor-bound protein 2/SOS complex via
a PKC-dependent mechanism may provide the link be-
tween Gq protein-coupled CCK receptor stimulation and
Ras activation.

A case report of a woman with gallstones and obesity
was ascribed to abnormal processing of transcripts from

a normal CCK1 receptor gene that resulted in the pre-
dominance of mRNA with a 262-bp deletion correspond-
ing to the third exon. Although this mutation could
negatively affect expression or coupling to G proteins,
neither in vivo nor in vitro data were obtained in support
of such inferences. Unfortunately, other affected family
members were not examined and expected splicing ab-
normalities in transcripts from other genes were not
studied, so only an association could be established be-
tween the common phenotype of gallstones and obesity
and the putative RNA processing abnormality in the
affected patient (Miller et al., 1995).

2. CCK2 Receptors. Molecular cloning of CCK2 recep-
tors has shown that this receptor is a member of the
seven-transmembrane domain GPCR superfamily
(Wank et al., 1992b). This confirmed previous results
showing that nonhydrolyzable GTP analogs reduced the
binding of selective CCK2 receptor agonists, as expected
of the coupling of these receptors with G proteins
(Knapp et al., 1990; Durieux et al., 1992).

In contrast to CCK1 receptors, the signal-transduction
cascade for CCK2 receptors has been rather poorly char-
acterized, in large part because of the difficulty of work-
ing with isolated neurons or isolated gastric mucosal
cells expressing CCK2 receptors. Thus, for a long time,
central CCK2 receptors have not been proved to be
linked to a well characterized second-messenger system
in the brain, including the phosphoinositide system, al-
though phosphoinositide metabolism was shown to be
affected by CCK in neuroblastoma (Barrett et al., 1989)
and in the embryonic pituitary cell line (Lo and Hughes,
1988). More recently, Zhang et al. (1992) showed that
CCK-8 increased the turnover of phosphoinositides and
IP3 labeling in dissociated neonatal rat brain cells, in
which both CCK1 and CCK2 receptors were expressed.
One study of CCK2 receptors, using synaptoneurosomes
from guinea pig cortex, failed to provide support to their
possible coupling with adenylyl cyclase or PLC, although
Ca21 release from intracellular stores, possibly via a G
protein-independent mechanism, could be triggered by a
CCK analog (Galas et al., 1992).

Expression of receptor cDNAs in a mammalian ex-
pression system allows for a readily available source of
receptor for functional studies. In transfected cells (Cos,
Chinese hamster ovary), it has been shown that like the
CCK1 receptor, the CCK2 receptor couples to a pertussis
toxin-insensitive G protein (Roche et al., 1990) that is
probably related to the Gq/11 family, thereby causing
activation of PLC (Tsunoda et al., 1988a,b, 1989; Del-
valle et al., 1992). The region of the CCK2 receptor
interacting with Gq was determined in CCK2 receptor
with Lys333 Met, Lys334Thr, and Arg335Leu mutations
transiently expressed in COS-7 cells and X. laevis oo-
cytes. Indeed, these mutations resulted in the loss of Gq

activation without affecting receptor affinity (Wang,
1997).
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Site-directed mutagenic replacement of Asp100 in the
rat CCK2 receptor, a highly conserved residue in TMII of
most GPCRs, results in a 50% reduction in CCK-8-stim-
ulated phophoinositide turnover with no change in
CCK-8 affinity and only a small (,6-fold) decrease in
antagonist affinity (Jagerschmidt et al., 1995). These
data led to the hypothesis that Asp100 points in the
direction of the cluster of basic amino acids (Lys333/
Lys334/Arg335), located in the third intracellular loop of
the receptor at the bottom of the TMVI, that plays a
critical role in CCK2 receptor activation of Gq proteins
(Wang, 1997).

Another residue, Phe347, which belongs to the TMVI
domain, was identified as essential for the signal trans-
duction process. Thus, the exchange of Phe347 for ala-
nine disrupts the phosphatidylinositol-signaling path-
way without affecting the binding of CCK receptor
agonists (Jagerschmidt et al., 1998). This amino acid
could be a residue implicated in transduction processes
through its possible role in agonist-induced changes in
receptor conformation and subsequent triggering of G
protein activation. Indeed, the exchange of Phe347 for
Ala could produce a conformational change in the se-
quence containing the basic triplet, located just beneath
TMVI.

On the other hand, by analogy with CCK1 receptors, it
has been shown that CCK2 receptors are coupled to a
phospholipase pathway leading to the release of arachi-
donic acid via a PTX-sensitive G protein (Pommier et al.,
1999) and to an MAPK pathway (Taniguchi et al., 1994).

B. Ligand-Receptor Interaction

1. Agonists. The examination of a 42-amino-acid N-
terminal truncation of the human CCK1 receptor and site-
directed mutants in the region near the top of TMI sug-
gested the interaction of amino acid residues Trp39 and
Gln40 with CCK. Further binding data for the interaction
between wild-type and Trp39Phe and Gln40Asn mutant
CCK1 receptors and a series of N-terminally modified CCK
analogs that were applied to a model of the CCK1 receptor
(based on data from bacteriorhodopsin, rhodopsin, and the
b-adrenergic receptors) suggested that the N-terminal
moiety of CCK-8 interacts via hydrogen bonding with
Trp39 and Gln40 (Kennedy et al., 1997). However, photo-
affinity labeling with 125I-desaminotyrosyl-Gly-
[Nle28,31,pNO2-Phe33]CCK-(26-33) of rat CCK1 receptors
overexpressed in Chinese hamster ovary cells demon-
strated just the opposite result: the placement of Trp39
proximate to the C-terminal pNO2-Phe33 residue of the
probe (Ji et al., 1997). The interaction of CCK with the
CCK1 receptor was further modeled using separate single
amino acid mutations, Lys105Val and Arg337Val, that
resulted in a loss in CCK-8-stimulated calcium release.
These data suggest that Lys105 and Arg337 in the CCK1
receptor interact with Tyr(SO3H) and Asp of CCK-8, re-
spectively (Tsunoda et al., 1997).

A study of 58 chimeric receptors in which one to four
divergent amino acids in the TM of the human CCK2
receptor were replaced with the corresponding amino
acids from the CCK1 receptor identified only a single
residue, Ser131, at the top of TMIII that confers a ;6-
fold subtype selectivity for gastrin versus CCK-8 (Kopin
et al., 1995). Chimeric and site-directed mutagenesis
studies of the rat CCK2 receptor containing CCK1 recep-
tor segmental substitutions suggested that a block of
five amino acids (residues 204–208, including Cys205,
which putatively forms a disulfide bridge with Cys127 at
the top of TMIII) is important for gastrin selectivity
(Silvente-Poirot and Wank, 1996) and that His207 is
also important for CCK-8 affinity (Silvente-Poirot et al.,
1998). Studies of human chimeric CCK1/CCK2 receptors
made through exon shuffling of the respective receptor
genes also demonstrated the importance of this area
near the top of TMIII for conferring high gastrin affinity
(Wu et al., 1997). Chimeric studies replacing the X.
laevis CCK receptor with variable-length N-terminal
segments of the human CCK2 receptor revealed the need
for multiple contact points in the N-terminal two-thirds
(through TMV) of the CCK2 receptor for conferring gas-
trin selectivity (Schmitz et al., 1996). Studies of Ala
scanning mutagenesis in the N terminus near the top of
TMI and the first ECL (ECL1) of the rat CCK2 receptor
identified one nonconserved (Arg57Ala) and four con-
served amino acids (Asn115Ala, Leu116Ala, Phe120Ala,
and Phe122Ala) that adversely affected CCK-8 affinity
when mutated to Ala. Reciprocal mutations of these
amino acids at equivalent positions in the rat CCK1
receptor revealed only two mutations, Leu103Ala and
Phe107Ala, that decreased CCK-8 affinity (Silvente-Poi-
rot et al., 1998). These studies suggest that CCK peptide
agonists interact with multiple amino acids in the ex-
tracellular domain of CCK receptors and that CCK1 and
CCK2 receptors have distinct binding sites despite their
shared high affinity for CCK-8. With the use of site-
directed mutagenesis, the roles of three aromatic resi-
dues located in TMV (Phe227) and TMVI (Phe347 and
Trp351) of the rat CCK2 receptor were also evaluated in
binding experiments. The results demonstrated that the
highly conserved residues in GPCRs, Phe227 and
Phe347, do not play an important role in the recognition
of the agonists. In contrast, Trp351 appeared to be in the
agonist-binding site of the receptor, where it probably
interacts with the C-terminal sequence of CCK-8, as
illustrated by the similar reduction in affinity for both
CCK-8 and CCK-4 (Jagerschmidt et al., 1998).

2. Antagonists. Data from CCK receptor chimeric and
site-directed mutagenesis studies suggest that the outer
third of TMVI and TMVIII interacts with the benzodiaz-
epine-based antagonists, L-364,718 and L-365,260. A sur-
vey of all TM amino acids of the human CCK2 receptor in
which one to four amino acids were replaced with the
corresponding CCK1 receptor amino acids identified two
single-point mutations, Thr111Asn and His376Leu, that
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cause a 23-fold decrease in L-365,260 affinity and a 63-fold
increase in L-364,718 affinity, respectively (Kopin et al.,
1995). The importance of the TMVII domain for antagonist
affinity was confirmed by a rat CCK2 receptor TMVII chi-
mera with a 13-fold decrease in L-364,718 affinity (Man-
tamadiotis and Baldwin, 1994) that could be explained by
the single-point mutation His381Leu (Jagerschmidt et al.,
1996). The reversal of the relative affinity for L-364,718
and L-365,260 between canine gastrin receptor and both
the rat and human CCK2 receptors noted earlier has been
explained by an interspecies variation of a single amino
acid in TMVI (Leu355 in dog versus the corresponding
Val349 in humans; Marino et al., 1993). The lack of effect
of these TMVI and TMVII mutations on agonist affinity
suggests that agonist- and antagonist-binding sites are, at
best, only partially overlapping.

C. Receptor Regulation. GPCR function is signifi-
cantly regulated by the mechanisms that determine re-
ceptor trafficking within the cell. The molecular and
cellular mechanisms involved in regulation of transloca-
tion, sequestration, recycling, and degradation of
GPCRs are not well understood, and the available data
are largely controversial. Fusion of the C terminus of
GPCR to the N terminus of the green fluorescent protein
is a valuable tool in the study of receptor localization and
trafficking. CCK1-green fluorescent protein allowed for
the direct observation of spontaneous and ligand-in-
duced internalization of the receptor (Tarasova et al.,
1997).

CCK1 receptor internalization is independent of the
state of phosphorylation and the presence of the C-ter-
minal tail (Rao et al., 1997; Go et al., 1998). In contrast,
internalization of the CCK2 receptor is at least in part
dependent on the phosphorylation of Ser/Thr residues in
its C terminus (Pohl et al., 1997). In the phosphoryla-
tion-deficient CCK1 receptor mutant with PKC consen-
sus site mutations Ser260Ala and Ser264Ala, desensiti-
zation of the CCK-stimulated inositol 1,4,5-triphosphate
response is delayed until the occurrence of receptor in-
ternalization (Rao et al., 1997). Desensitization of CCK2
receptor stably expressed in Chinese hamster ovary cells
does not require the C terminus and is independent of
internalization, unlike the CCK1 receptor (Choi et al.,
1998).

V. Radioligands and Binding Assays:
Heterogeneity of CCK1 and CCK2 Receptors

Initial studies describing the distribution and the
binding characteristics of CCK1 and CCK2 receptors
have used nonselective CCK receptor radioligands. Be-
cause CCK-8 is the physiological ligand of CCK recep-
tors, it was first considered to be the most suitable probe
for the characterization of CCK receptors in radioligand-
binding studies. Preparation of stable, high-specific-ac-
tivity radioiodinated CCK through conjugation to 125I-
Bolton Hunter reagent (125I-BH) has been described

using several CCK fragments, such as CCK-8 or CCK-33
(Sankaran et al., 1979; Lin and Miller, 1985). Specific
binding sites for CCK have also been characterized us-
ing a 125I-CCK-8 probe made resistant to degradation
through reaction with the iodinated form of the imi-
doester, methyl-p-hydroxybenzimidate (Praissman et
al., 1983). Characterization of CCK1 and CCK2 receptors
was performed in the presence of selective nonradiola-
beled ligands to saturate only one of the CCK receptors
(Hill and Woodruff, 1990). Now, selective radioligands
are available for the specific labeling of CCK1 or CCK2
receptors.

A. Radioligands at CCK1 Receptors

[3H]-(6)-L-364,718 is a potent and selective CCK1 re-
ceptor antagonist that binds saturably and reversibly to
rat pancreatic membranes. The radioligand recognizes a
single class of binding sites with a high affinity (Kd 5
0.23 nM), and the potency of various CCK receptor ago-
nists and antagonists to inhibit its binding correlates
with both their ability to inhibit 125I-CCK-8-specific
binding and the known pharmacological properties of
these compounds in peripheral tissues (Chang et al.,
1986). Nevertheless, in a more recent study, Talkad et
al. (1994) showed that 125I-CCK-8 binds to two different
states of the CCK1 receptor in rat pancreatic acini (a
high-affinity state and a low-affinity state), whereas
[3H]L-374,718 binds to a low-affinity state and to a pre-
viously unrecognized very low-affinity state. Similar
measurements using transfected COS cells also identi-
fied three different states of the CCK1 receptor, suggest-
ing that this feature is an intrinsic property of the CCK1
receptor molecule itself (Huang et al., 1994)

The peptide antagonist of the CCK1 receptor JMV-179
was modified at its N terminus through the incorpora-
tion of p-hydroxyphenylpropionate (BH reagent) and
was subsequently radioiodinated (Silvente-Poirot et al.,
1993b). The results obtained with this first antagonist
radioligand, 125I-BH-JMV-179, demonstrated that CCK1
receptors exist under two interconvertible affinity states
regulated by G proteins in rat pancreatic plasma mem-
branes.

B. Radioligands at CCK2 Receptors

Several peptide ligands have been used to character-
ize CCK2-binding sites, such as [3H]pentagastrin,
[3H]gastrin or 125I-gastrin, and [3H]CCK-4 (Gaudreau et
al., 1985; Clark et al., 1986; Durieux et al., 1988).

The highly potent agonist [3H]pBC264 (Durieux et al.,
1989) has a subnanomolar affinity for CCK2 receptors
(Kd 5 0.15–0.20 nM) in brain membranes from mouse,
cat, rat, guinea pig, and humans (Durieux et al., 1992).
[3H]pBC264 binds to membranes in a time-dependent,
reversible, and saturable manner. Moreover, even in the
rat brain, a tissue with high levels of nonspecific binding
and low density of CCK receptors (Williams et al., 1986),
the specific binding of [3H]pBC264 reached 80% of total
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binding at a radioligand concentration close to the Kd
value (Durieux et al., 1992). In guinea pig and mouse
brain, specific [3H]pBC264 binding was almost not af-
fected by NaCl and/or guanyl-59-yl-imidodiphosphate. In
contrast, in rat brain, the affinity of [3H]pBC264 was
decreased and the maximal number of binding sites was
increased by NaCl and the guanyl nucleotide, suggesting
that a proportion of CCK2 receptors are constitutively
coupled to G proteins (Durieux et al., 1992).

The high selectivity of [3H]SNF8702 also permits the
characterization of CCK2 receptors in brain tissues
without interference from the population of CCK1 recep-
tors present (Knapp et al., 1990). The results obtained in
guinea pig brain cortex demonstrated that [3H]SNF8702
binds to a larger population of CCK2 sites than
[3H]pBC264, which is not the case in mouse brain. These
results could reflect the presence of several CCK-binding
states with different sensitivities to ions and nucleo-
tides. Thus, a part of the receptors labeled by
[3H]pBC264 in guinea pig brain may be insensitive to
these reagents, unlike the additional sites bound by
[3H]SNF8702 (Knapp et al., 1990; Durieux et al., 1992).

Selective nonpeptide antagonist radioligands have
been developed. [3H]L-365,260 binds saturably and re-
versibly to brain membranes, and Scatchard analysis
indicated a single class of high-affinity (Kd 5 2 nM)
binding sites (Chang et al., 1989). Recently, a new series
of nonpeptide CCK2 receptor antagonists has been de-
scribed by Horwell et al. (1991). Some of these com-
pounds have been radioiodinated (125I-PD-142,308; Hor-
well et al., 1995) or tritiated ([3H]PD-140,376; Hill et al.,
1993). The latter radioligand has advantages over the
alternative radioligand [3H]L-365,260 because it has a
greater selectivity and affinity for the CCK2 receptors
and yields a higher ratio of specific to nonspecific bind-
ing in both cerebral cortex and gastric mucosa (Hunter
et al., 1993). Interestingly, in addition to the high-affin-
ity population of CCK2 receptors, [3H]PD-140,376 la-
beled a low-affinity state.

C. Heterogeneity of CCK2 Receptor-Binding Sites

Binding studies using linear or cyclic CCK-8 analogs
allowed the discovery of a heterogeneity of CCK2-bind-
ing sites in guinea pig brain (Durieux et al., 1986b;
Knapp et al., 1990; Rodriguez et al., 1990). Thus, CCK2
receptors have been shown to exist in three different
affinity states (Huang et al., 1994). This heterogeneity
has been confirmed in saturation and competition bind-
ing studies. Thus, the Hill coefficient was in general
significantly lower than unity in different tissues (Hunt-
er et al., 1993; Huang et al., 1994; Harper et al., 1996).

The existence of CCK2 receptor heterogeneity has also
been proposed from experiments performed in the pres-
ence of guanosine-59-(b,g-imido)diphosphate or
guanosine-59-O-(3-thio)triphosphate. The results ob-
tained clearly showed that these nonhydrolyzable GTP
analogs reduced the binding of selective CCK2 receptor

ligands (Wennogle et al., 1988). However, different sen-
sitivities to guanyl nucleotides were observed depending
on the structures of the ligands used (Knapp et al., 1990;
Durieux et al., 1992; Lallement et al., 1995; Suman-
Chauhan et al., 1996).

Several authors have described CCK2 receptor ago-
nists apparently capable of discriminating two (Durieux
et al., 1986b; Derrien et al., 1994b; Million et al., 1997)
or even three (Huang et al., 1994) different affinity
states. More recently, similar results have been obtained
with antagonists (Hunter et al., 1993; Harper et al.,
1996; Bellier et al., 1997).

Several hypotheses could be proposed to explain this
apparent heterogeneity of CCK2 receptor-binding sites.
It is possible that the coupling of CCK2 receptors to
different G proteins (see IVA2. CCK2 Receptors) induces
different receptor conformation with different affinities
for the ligands (for a review, see Kenakin, 1995). An-
other explanation would be that depending on the mo-
lecular interaction of a ligand with its binding site, pref-
erential or differential coupling with a G protein can
occur (Spengler et al., 1993).

VI. Distribution of CCK Receptors

A. Distribution in Central Nervous System

Specific CCK-binding sites were demonstrated in
membranes from brain homogenates almost two decades
ago (Hays et al., 1980; Innis and Snyder, 1980a,b; Saito
et al., 1980; Praissman et al., 1983). Since then, numer-
ous studies using autoradiography and, more recently,
in situ hybridization and immunocytochemistry have
investigated the regional distribution and specific cellu-
lar localization of CCK receptors throughout the
neuraxis. Early studies used radioligands such as 125I-
CCK-33, 125I-CCK-8, [3H]pentagastrin, [3H]CCK-8,
[3H]CCK-4 or [3H]Boc[Nle28,31]CCK27-33 (Gaudreau et
al., 1983, 1985; Zarbin et al., 1983; Van Dijk et al., 1984;
Dietl et al., 1987; Pélaprat et al., 1987; Durieux et al.,
1988; Niehoff, 1989) that do not distinguish between the
two CCK receptors. In general, these studies performed
in several species (e.g., rat, guinea pig, monkey, hu-
mans) showed high densities of CCK-binding sites in
several areas, including the cerebral cortex, striatum,
olfactory bulb and tubercle, and certain amygdaloid nu-
clei. Moderate levels were observed in the hippocampus,
claustrum, substantia nigra, superior colliculus, periaq-
ueductal gray matter, and pontine nuclei. Low densities
were reported in several thalamic and hypothalamic
nuclei and in the spinal cord (Fig. 5).

Initial evidence for species differences in the distribu-
tion of CCK receptors was also provided by these stud-
ies. For example, in the cerebellum, high densities of
CCK-binding sites were present in guinea pig, whereas
only low levels were detected in rat (Zarbin et al., 1983;
Gaudreau et al., 1985; Mantyh and Mantyh, 1985).
CCK-binding sites have now been identified and visual-
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ized in the nervous system of numerous species ranging
from goldfish to humans (e.g., Dietl et al., 1987; Kritzer
et al., 1988, 1990; Hyde and Peroutka, 1989; Miceli and
Steiner, 1989; Hill et al., 1990; Ghilardi et al., 1992;
Moons et al., 1992; Schiffmann et al., 1992; Kuehl-Ko-
varik et al., 1993; Madtes and King, 1994; Morency et
al., 1994; Himick et al., 1996; Mercer et al., 1996; Oliver
and Vigna, 1996). These studies showed both similari-
ties and sometimes striking differences in the compara-
tive distribution of CCK receptors from one species to
another. More comprehensive analyses and discussion
about CCK receptor distribution differences in several
brain regions among multiple species can be found else-
where (Gaudreau et al., 1985; Sekiguchi and Moroji,
1986; Williams et al., 1986; Dietl and Palacios, 1989).

With the advent of specific radioligands that could
differentiate between the two types of CCK receptors, it
has become apparent that CCK1 and CCK2 receptors
exhibit a sometimes overlapping, yet distinct, distribu-

tion throughout the CNS. The vast majority of CCK
receptors in the CNS are of the CCK2 type, with CCK1
receptors restricted to rather discrete regions. The pre-
cise anatomical localization of the two CCK receptor
types, as detailed later, serves to provide morphological
substrates for many of the diverse functions attributed
to neural CCK, including involvement in feeding, sati-
ety, cardiovascular regulation, anxiety, pain, analgesia,
memory, neuroendocrine control, osmotic stress, dopam-
ine-related behaviors, and neurodegenerative and neu-
ropsychiatric disorders (see Crawley and Corwin, 1994).

1. CCK1 Receptors. Radioligand studies, initially con-
ducted in the rat, showed CCK1 receptors to be mainly
located in the interpeduncular nucleus, area postrema,
and medial nucleus tractus solitarius, with additional
areas of binding found in the habenular nuclei, dorso-
medial nucleus of the hypothalamus, and central amyg-
dala (Moran et al., 1986; Hill et al., 1987, 1988a; Moran
and McHugh, 1988; Woodruff et al., 1991; Carlberg et

FIG. 5. Autoradiograms showing the distribution of [3H]BDNL binding to CCK1 and CCK2 receptors in the rat forebrain and midbrain. Moderate
to high densities of receptors are observed in the olfactory bulbs (A), the anterior olfactory nucleus (B), the neocortex, and especially in layer III of the
medial frontal (B–C) and cingulate (E–I) cortices, the layer IV of frontal (B and C) and frontoparietal (D–J) cortices, the layers II–IV of retrosplenial
cortex (L), the olfactory tubercle (E–I), the endopiriform nucleus (E–K), the nucleus accumbens (D–F), the striatum (D–I), and the hippocampus, where
CCK receptors are more concentrated in the dentate gyrus and subiculum (K). [3H]BDNL, Boc-Tyr(SO3H)-[43H]Nle-Gly-Trp-[43H]Nle-Asp-Phe-NH2.
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al., 1992; Zajac et al., 1996; Qian et al., 1997). Studies in
primates have revealed dramatic species differences, dem-
onstrating a much higher prevalence and broader distri-
bution of CCK1 receptors in the monkey and humans than
that in rodents (Hill et al., 1988b, 1990; Graham et al.,
1991). Thus, in the monkey, CCK1 receptor-binding sites
are located not only in the area postrema, nucleus, tractus
solitarius, and hypothalamic dorsomedial nucleus, but also
in the supraoptic nucleus, paraventricular nucleus, mam-
millary bodies, supramammillary region, infundibular re-
gion, dorsal motor nucleus of the vagus, and the neurohy-
pophysis. In addition, the mesostriatal dopaminergic
system exhibits CCK1 receptor binding in both its origin
(substantia nigra pars compacta and adjacent ventral teg-
mental area) and forebrain targets (caudate and putamen).
CCK1 receptors are also found in the dorsal horn of mon-
key and human spinal cord. Peripherally, the nodose gan-
glion and vagus nerve contain and transport CCK1 recep-
tors (Corp et al., 1993; Widdop et al., 1994).

As determined by in situ hybridization using a cRNA
probe, CCK1 receptor mRNA in the rat is distributed
within most of the above areas exhibiting CCK1 recep-
tor-binding sites (Honda et al., 1993). Moreover, addi-
tional areas containing CCK1 receptor mRNA were re-
vealed. In the forebrain, moderate to light mRNA
expression is localized in the olfactory bulb, anterior
olfactory nuclei, olfactory tubercle, piriform cortex, neo-
cortex, claustrum, taenia tecta, all principal cell layers
of the hippocampal formation, medial nucleus of the
amygdala, and nucleus of the lateral olfactory tract.
Moderate expression is also present in the lateral septal
nucleus, bed nucleus of the stria terminalis, preoptic
nucleus, thalamic reticular nucleus, and several hypo-
thalamic regions, including the arcuate nucleus and lat-
eral and posterior hypothalamic areas. Limited labeling
for CCK1 mRNA has been observed in the brainstem,
with expression found only in the dorsal motor nucleus
of the vagus nerve and the interpeduncular, caudal lin-
ear raphe, and hypoglossal nuclei.

Finally, it should be noted that a recent report on the
immunohistochemical distribution of the CCK1 receptor
in rat CNS, using a newly developed and partially char-
acterized antiserum, described numerous brain regions
displaying CCK1 receptor-like immunoreactivity (Mer-
cer and Beart, 1997). In addition to being present within
most of the areas shown above to contain CCK1 receptor-
binding sites or mRNA, other regions with either
perikaryal or axonal/dendritic immunolabeling included
the nucleus accumbens, anteroventral thalamic nucleus,
medial mammillary nucleus, superior colliculus, periaq-
ueductal gray matter, nuclei raphe obscurus and dorsa-
lis, and parabrachial, trigeminal, vestibular, and infe-
rior olivary nuclei, as well as layers 2 to 6 of the spinal
cord. Further studies are necessary to confirm these
results.

2. CCK2 Receptors. In the telencephalon, autoradio-
graphic binding studies (Moran et al., 1986; Pélaprat et

al., 1987; Durieux et al., 1988; Woodruff et al., 1991;
Carlberg et al., 1992; Qian et al., 1997) showed that high
densities of CCK2 receptors are localized in the external
plexiform layer of the main olfactory bulb, middle layers
of the neocortex (with particularly high levels in the
retrosplenial and cingulate cortices), piriform cortex, nu-
cleus accumbens, and parasubiculum (Table 10). Moder-
ate levels are found in the olfactory bulb glomerular
layer, deep layers of neocortex, olfactory tubercle, is-
lands of Calleja, fundus striata, ventral pallidum, cau-
date-putamen, hippocampus, dentate gyrus, presubicu-
lum, and some amygdaloid nuclei. Only low densities are
present in other telencephalic areas such as the taenia
tecta, septum, bed nucleus of the stria terminalis, diag-
onal band of Broca, globus pallidus, superficial layers of
neocortex, and most amygdaloid nuclei. In the dienceph-
alon, moderate levels of CCK2 receptors are distributed
within several hypothalamic nuclei, including the supra-
chiasmatic, supraoptic and ventromedial nuclei, and
within the thalamic reticular nucleus. Low binding den-
sities are found in other diencephalic regions such as the
medial preoptic, arcuate, and dorsomedial hypothalamic
nuclei; paraventricular, mediodorsal and reuniens tha-
lamic nuclei; and zona incerta and lateral habenular
nucleus. In the mesencephalon, moderate densities of
CCK2 receptor binding are localized in the parabigemi-
nal nucleus, substantia nigra, and superior colliculus,
with low levels present in the inferior colliculus, para-
brachial nucleus, dorsal raphe nucleus, and periaque-
ductal gray matter. Relatively few CCK2 receptor-bind-
ing sites are found in the myelencephalon, with low to
moderate levels distributed within the pontine and su-
perior olivary nuclei, and nucleus tractus solitarius. As
noted, CCK2 receptor binding in the cerebellum is spe-
cies dependent. Indeed, with autoradiographic studies,
CCK2 receptors have been detected in the guinea pig,
human, and mouse cerebellum, but not in rat cerebellum
(Sekiguchi and Moroji, 1986; Williams et al., 1986, Dietl
et al., 1987; Jagerschmidt et al., 1994). Finally, low
levels of binding are observed in the dorsal and ventral
horns of the spinal cord. In the periphery, CCK2 recep-
tor-binding sites are located in the trigeminal and dorsal
root ganglia (DRG; Ghilardi et al., 1992) and in the
vagus nerve (Corp et al., 1993).

In situ hybridization studies using cRNA probes
showed that the distribution of CCK2 receptor mRNA
(Honda et al., 1993) is in good agreement with that of
CCK2 receptor-binding sites (see also Shigeyoshi et al.,
1994; Hansson et al., 1998). Although some discrepan-
cies were observed, virtually all of the nuclei and regions
described earlier were shown to exhibit hybridization for
CCK2 receptor mRNA, with particularly strong signals
found in the neocortex, piriform cortex, anterior olfac-
tory nuclei, and several amygdaloid nuclei. Some areas
with moderate to weak expression included the olfactory
bulb and tubercle, hippocampal formation, claustrum,
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other amygdaloid nuclei, septum, nucleus accumbens,
caudate-putamen, substantia nigra, thalamic reticular
nucleus, paraventricular, supraoptic and ventromedial
hypothalamic nuclei, interpeduncular nucleus, red nu-
cleus, vestibular nuclei, dorsal column nuclei, reticular
formation, and lateral cerebellar nucleus. Diffuse label-
ing was also reported throughout the spinal cord. In
peripheral sensory ganglia, CCK2 receptor mRNA has
been localized to a small population of DRG neurons
(Zhang et al., 1993).

3. Regulation of CCK Receptors. It has become ap-
parent that expression of CCK receptor-binding sites
and mRNAs in the nervous system is not static but
rather is malleable on different kind of perturbations.
This is particularly evident in the hypothalamus where
the levels of binding sites and/or mRNA for CCK2 and/or
CCK1 receptors have been shown to increase in response

to various physiological or pharmacological stimuli such
as osmotic stress, hypophysectomy, food and water de-
privation, and chronic morphine treatment (Day et al.,
1989; Meister et al., 1994; Hinks et al., 1995; O’Shea and
Gundlach, 1995; Munro et al., 1998). In primary sensory
neurons, the expression of CCK2 receptor mRNA is dra-
matically up-regulated after peripheral axotomy from
the normal low percentage of in situ hybridization-la-
beled cells to encompass about two-thirds of all DRG
neurons across all size categories on peripheral axotomy
(Zhang et al., 1993). In contrast, mild cortical infarction
results in decreased levels of CCK2 receptor mRNA and
binding sites in the entire ipsilateral cerebral hemi-
sphere (Van Bree et al., 1995). These data on CCK
receptor alterations are in line with previous demonstra-
tions of changes in CCK mRNA and peptide levels after
certain perturbations, thereby providing further evi-

TABLE 10
Distribution of [3H]CCK-4 binding to CCK receptors in the rat brain

Frontal cortex Septal region
Layers I–III 11 Septum 1
Layer III, medial part 1111 Bed nucleus of the stria terminalis 11
Layer IV 111 Septohippocampal nucleus 11
Layer V 11 Hippocampus
Layer VI 111 Subiculum 111

Frontoparietal motor cortex CA1–CA3 1
Layers I–III 11 Dentate gyrus 111
Layer IV 111 Amygdala
Layers V, VI 11 Lateral nucleus 11

Frontoparietal somatosensory cortex Posteromedial nucleus 11
Layers I–III 11 Amygdalo-hippocampal area 11
Layer IV 111 Hypothalamus
Layers V, VI 11 Ventromedial nucleus 111

Striate cortex Paraventricular nucleus 111
Layers I–V 111 Supraoptic nucleus 111

Temporal cortex (auditory area) Thalamus
Layers I–III 111 Lateral habenula 1
Layer IV 1111 Paraventricular nucleus 11
Layers V, VI 111 Reticular thalamic nucleus 111

Zona incerta 1
Cingulate cortex, layer III 1111 Midbrain
Retrosplenial cortex 1111 Superior 11
Entorhinal cortex 111 Substantia nigra 11
Endopyriform nucleus 1111 Periacqueductal gray matter 1

Olfactory-system
Olfactory bulbs

External plexiform layer 111
Glomerular layer 111

Anterior olfactory nucleus 11
Olfactory tubercule 111
Primary olfactory cortex (superficial layer) 1111

Basal ganglia
Striatum

Head 111
Body 111
Tail 1

Nucleus accumbens
Anterior part 1111
Posterior part 1

Globus pallidus 1

1111, high level; 111, moderate level; 11, low level; 1, very low level.
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dence that neural CCK ligand-receptor systems are ca-
pable of plastic responses to various stimuli.

B. Distribution in Gastrointestinal and Other Systems

In the gastrointestinal tract and other peripheral sys-
tems, CCK1 receptors are present in pancreatic acinar
cells, chief cells and D cells of the gastric mucosa,
smooth muscle cells of the gallbladder, pyloric sphincter,
sphincter of Oddi, some gastrointestinal smooth muscle
and enteric neuronal cells, and anterior pituitary corti-
cotrophs (for reviews, see Jensen et al., 1994; Wank et
al., 1994a; Wank, 1995). CCK1 receptors can also be
expressed in several tumors, including pancreatic ade-
nocarcinomas, meningiomas, and some neuroblastomas
(Reubi et al., 1997a; Weinberg et al., 1997), as well as in
certain pancreatic carcinoma, neuroblastoma, and lung
cancer cell lines (Logsdon, 1986; Klueppelberg et al.,
1990; Sethi et al., 1993). Furthermore, CCK1 receptor
mRNA has been found in esophageal, gastric, and colon
cancers (Clerc et al., 1997). On the other hand, periph-
eral CCK2 receptors are located in smooth muscle cells
throughout the gastrointestinal tract (including the gall-
bladder), parietal, enterochromaffin-like, D cells and
chief cells of the gastric mucosa, myenteric plexus neu-
rons, pancreatic acinar cells, monocytes, and T lympho-
cytes (Sacerdote et al., 1991; Jensen et al., 1994; Mantyh
et al., 1994; Wank et al., 1994; Wank, 1995; Song et al.,
1996; Tarasova et al., 1996; Helander et al., 1997; Reubi
et al., 1997b). Tumors and tumor cell lines expressing
CCK2 receptors include medullary thyroid, gastric, co-
lon, ovarian and small cell lung carcinomas, astrocyto-
mas, and certain pancreatic and lung cancer cell lines
(Sethi et al., 1993; Wank, 1995; Reubi and Waser, 1996;
Clerc et al., 1997; Reubi et al., 1997a).

VII. Physiological Implications of CCK Receptors

A. Peripheral Functions

As described in detail in VIB. Distribution in Gastro-
intestinal and Other Systems, CCK1 receptors in the
periphery are primarily localized in the pancreas, gall-
bladder, pylorus, intestine, and vagus nerve (Sankaran
et al., 1980; Smith et al., 1984; Moran et al., 1987, 1990;
Szecowka et al., 1989; Hill et al., 1990; Wank et al.,
1992a). In the pancreas, CCK acts at CCK1 receptors on
acinar cells to stimulate the secretion of the digestive
enzyme pancreatic amylase (Liddle et al., 1984; Fre-
idinger, 1989; Jensen et al., 1989). In the gallbladder,
CCK acts at CCK1 receptors to stimulate gallbladder
contraction (Chang and Lotti, 1986; Gully et al., 1993).
Commercial preparations of CCK are used clinically to
evaluate gallbladder contraction in human gallbladder
disease (Ondetti et al., 1970).

The role of peripheral CCK1 receptors in the regula-
tion of feeding behavior is an area of intense investiga-
tions. CCK1 receptors appear to mediate the transmis-
sion of sensory information from the gut to the brain.

Peripherally administered CCK inhibits food consump-
tion, even after fasting, in many species, including hu-
mans (Gibbs et al., 1973; Pi-Sunyer et al., 1982; Stacher
et al., 1982; for reviews, see Smith and Gibbs, 1992;
Crawley and Corwin, 1994). Furthermore, CCK1 recep-
tor antagonists increase food consumption and postpone
satiety in several species, supporting the idea that en-
dogenous CCK participates in the physiological regula-
tion of feeding behavior (Dourish et al., 1989; Wolkowitz
et al., 1990; Corwin et al., 1991; Reidelberger et al.,
1991; Moran et al., 1992, 1993; for a review, see Crawley
and Corwin, 1994). The entry of food into the intestine
triggers the release of endogenous CCK by the intestinal
mucosa, thereby activating CCK1 receptors in the pe-
riphery. In particular, CCK1 receptors on the vagus
nerve (Moran et al., 1987) appear to be critical for the
satiety-inducing action of CCK. Thus, lesions of the va-
gus nerve completely block the CCK-induced satiety
syndrome (Crawley et al., 1981; Smith et al., 1981;
South and Ritter, 1988). These findings have led to the
hypothesis that CCK released from the intestine after a
meal activates CCK1 receptors on the vagus nerve to
transmit sensations of fullness to the brain, which sub-
sequently terminates feeding behaviors and initiates the

FIG. 6. Schematic representation of the mechanism of action of CCK
in the regulation of feeding behavior. It is proposed that CCK from the
intestine is delivered, after a meal, in the circulation to the stomach,
where it acts directly on vagal afferents to transmit sensations of fullness
to the brain. NTS, nucleus tractus solitarius; PVN, paraventricular nu-
cleus; PBN, parabrachial nucleus; VMH, ventromedial nucleus of the
hypothalamus (reproduced from Dockray, 1988).
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sequence of behaviors associated with satiety (Smith
and Gibbs, 1992; Fig. 6). CCK1 receptor agonists have
been proposed as anorectics for the treatment of obesity
(Simmons et al., 1994; Wettstein et al., 1994). Con-
versely, CCK1 receptor antagonists have been proposed
for the treatment of anorexia disorders (Wolkowitz et al.,
1990).

CCK2 receptors in the periphery are primarily local-
ized in the stomach (Kopin et al., 1992) and on the vagus
nerve in some species (Mercer and Lawrence, 1992). As
previously demonstrated, gastrin acts at CCK2 receptors
to stimulate gastric acid secretion (Schubert and Sham-
burek, 1990). Similarly, CCK stimulates gastric acid
secretion (Sandvik and Waldum, 1991), and this effect
can be blocked by CCK2 receptor antagonists (Bado et
al., 1991; Pendley et al., 1995). To further explore the
peptidergic pharmacology of the pyloric sphincter, it is
desirable to have a preparation that would allow the
examination of contraction independent of basal motor
activity and could exclude contribution from the enteric
nervous system. Such a preparation of isolated antral
cells has been obtained through enzymatic disaggrega-
tion of tissue strips from different species, as well as
disaggregated isolated cell preparations from the pyloric
sphincter. Results obtained from these assays show that
pyloric smooth muscle contractions are stimulated by
low doses of CCK and that gastric emptying induced by
a lipid-enriched meal is inhibited by CCK2 receptor an-
tagonists (Debas et al., 1975; Lopez et al., 1991). The
latter compounds have been proposed for the treatment
of gastric ulcers (Pendley et al., 1995).

Another relatively simple functional assay for CCK
receptors is the guinea pig ileum longitudinal muscle
myenteric plexus, which contains both CCK1 and CCK2
receptors. It has been demonstrated that CCK-8 elicits
contraction through both receptors. Moreover, it has
been shown that activation of CCK2 receptor released
only acetylcholine, whereas activation of CCK1 receptor
is responsible for the release of both substance P and
acetylcholine (Dal Forno et al., 1992; Corsi et al., 1994).

B. Central Functions

In line with its wide distribution in brain, CCK is
involved in the modulation/control of multiple central
functions. In particular, numerous experimental and
clinical studies have clearly shown that CCK, through
its action at CCK1 and CCK2 receptors, participates in
the neurobiology of anxiety, depression, psychosis, cog-
nition, and nociception.

1. CCK in Panic Attacks and Anxiety. The initial
suggestion that the CCK system might be involved in
anxiety came from experiments of Bradwejn and de
Montigny (1984, 1985a,b) that showed that benzodiaz-
epine receptor agonists could attenuate CCK-induced
excitation of rat hippocampal neurons. Subsequent clin-
ical studies demonstrated that bolus injections of the
CCK2 receptor agonist CCK-4 or pentagastrin provoke

panic attacks in patients with panic disorders (Bradwejn
et al., 1990, 1991b, 1992a,b). The induced symptoms are
comparable to those produced by a standard panic-pro-
voking agent (35% CO2; Bradwejn and Koszycki, 1991)
and can be attenuated by antipanic pharmacological
agents such as antidepressants (Bradwejn and Koszy-
cki, 1994; Shlik et al., 1997a; van Megen et al., 1997).
CCK-4 also provokes panic attacks in healthy human
subjects (de Montigny, 1989; Bradwejn et al., 1991a;
McCann et al., 1994); however, sensitivity to the peptide
is enhanced in panic disorder patients relative to
healthy volunteers (Bradwejn et al., 1991b; van Megen
et al., 1994), suggesting that endogenous CCK system
may be altered in panic disorder and contributes to
pathological anxiety. Recent investigations have re-
vealed that the panicogenic effects of CCK2 receptor
agonists are not limited to panic disorder, because indi-
viduals with social phobia, generalized anxiety disorder,
obsessive compulsive disorder, and premenstrual dys-
phoric disorder also exhibit an augmented behavioral
response to these ligands (Le Melledo et al., 1995; De
Leeuw et al., 1996; van Vliet et al., 1997; Brawman-
Mintzer et al., 1997; Katzman et al., 1997). Although
these data suggest that CCK sensitivity is not peculiar
to panic disorder, the threshold of vulnerability to CCK2
receptor agonists appears to be lower in panic disorder
relative to other psychopathologies in which anxiety is a
significant component (Katzman et al., 1997). In paral-
lel, a number of investigators have reported that CCK
peptides (Boc-CCK-4, BC 197) administered systemi-
cally or intracerebrally produce anxiogenic-like effects
in different animal species, including mouse, rat, guinea
pig, cat, and monkey (Blommaert et al., 1993; Harro et
al., 1993; for a review, see Daugé and Roques, 1995).
However, the anxiogenic effects of CCK peptides in an-
imals have not been observed by all investigators, and
the relevant negative findings should not be ignored
(Shlik et al., 1997b). The conflicting data reported in the
animal literature are attributable in part to the failure
to address the various factors that potentially influence
susceptibility to the anxiogenic effects of CCK (Brad-
wejn and Vasar, 1995). For instance, rats with low ex-
ploratory behavior (i.e., “anxious” rats) have been re-
ported to exhibit a higher density of CCK receptor-
binding sites in the frontal cortex and hippocampus
relative to that in rats with high exploratory behavior
(i.e., “nonanxious” rats; Harro et al., 1990; Koks et al.,
1997). Thus, the effects of CCK compounds could vary
considerably because of existing differences in the dis-
tribution and binding characteristics of CCK receptor
types and/or affinity states among species. Recently, the
effects of the selective CCK2 receptor agonists BC 264
and BC 197 and of the nonselective CCK receptor ago-
nist BDNL were investigated in rats subjected to the
elevated plus-maze. Surprisingly, BDNL and BC 197
did induce anxiogenic-like effects, but BC 264 was de-
void of any effect (Fig. 7). The behavioral responses to
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BDNL and BC 197 could be suppressed by CI-988, as
expected from the involvement of CCK2 receptors (Der-
rien et al., 1994b). On the other hand, Palmour et al.
(1993) studied the anxiogenic effects of CCK receptor

agonists in a nonhuman primate model. CCK-4 admin-
istered i.v. to African green monkeys has strong and
dose-related effects on behaviors thought to reflect anx-
iety and panic. Interestingly, BC 264 also produces these
behavioral responses, but the profile of behavior is some-
what different because at low doses, hypervigilance and
stereotypy are prominent.

The behavioral effects of CCK2 receptor agonists in
humans are accompanied by marked biological alter-
ations, including robust increases in heart rate, blood
pressure, and minute ventilation (Bradwejn et al.,
1992a, 1998), increased hypothalamic-pituitary-adrenal
axis activity (de Montigny, 1989; Abelson et al., 1991;
Kellner et al., 1997; Shlik et al., 1997a), and elevated
blood levels of dopamine, epinephrine, norepinephrine,
and neuropeptide Y (Boulenger et al., 1996). The extent
to which the biological alterations due to CCK2 receptor
agonist administration are comparable to those under-
lying naturally occurring panic attacks remains to be
determined. Functional imaging studies in healthy vol-
unteers have shown that CCK-4-induced anxiety is as-
sociated with cerebral blood flow activation in the ante-
rior cingulate gyrus, the claustrum-insular-amygdala
region, and the cerebellar vermis (Benkelfat et al.,
1995). Although these studies indicate that brain mech-
anisms are activated after CCK-4 administration, they
do not elucidate the precise neuronal circuitry subserv-
ing CCK-4-induced panic. It has been proposed that
brainstem nuclei, including nucleus tractus solitarius,
medulla, and parabrachial nucleus, are important sites
of action of exogenous CCK-4 (Shlik et al., 1997b). These
structures contribute to the regulation of respiration
and cardiopulmonary function and have close anatomi-
cal and functional links with the locus ceruleus, a brain
region involved in the expression of fear and anxiety.
Studies in animals have shown that CCK interacts with
brainstem structures to modulate respiration, heart
rate, and blood pressure (Denavit-Saubié et al., 1985),
and it is likely that the prominent cardiorespiratory
symptoms elicited by exogenous CCK-4 in humans re-
sult from direct or indirect stimulation of CCK receptors
in brainstem nuclei. The emotional symptoms evoked by
CCK-4 may rise from an action of this peptide on brain-
stem structures and a subsequent activation or inhibi-
tion of higher CNS regions mediated through neuronal
projections.

The neurobiological mechanisms by which CCK2 re-
ceptor agonists provoke panic and concomitant biologi-
cal changes have been the subject of considerable re-
search activity. Animal studies suggest that anxious
behavior induced by various CCK fragments is associ-
ated with selective CCK2 receptor stimulation (Harro et
al., 1993). CCK2 receptors also appear to participate in
the expression of anxiety in humans after systemic ad-
ministration of CCK-4 and pentagastrin. Thus, acute
treatment with the selective CCK2 receptor antagonist
L-365,260 was reported to block CCK-4-induced panic

FIG. 7. Effects of i.p. injection of BDNL, BC 197, and BC 264 admin-
istered 30 min before the experiment in the elevated plus-maze. The
behavioral responses of rats were measured in the elevated plus-maze for
5 min. They are expressed as the percentage 6 S.E.M. of time spent in
open arms. ,P , .05 and ,,P , .01 compared with control group.
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attacks in panic disorder patients (Bradwejn et al.,
1994) and pentagastrin-induced panic symptoms in
healthy volunteers (Lines et al., 1995). Although CCK2
receptors appear to be the key component from which
CCK-4 triggers panic symptoms, there is growing evi-
dence that the peptide produces its effects through in-
teractions with other neurotransmitter systems. Animal
studies have demonstrated that serotonin, norepineph-
rine, dopamine, opioids, corticotropin-releasing factor,
and the benzodiazepine/g-aminobutyric acid complex
play salient roles in the induction of anxiety with CCK
(Crawley, 1995; Zacharko et al., 1995). Similarly, clini-
cal studies have revealed important interactions be-
tween CCK and serotonin (Shlik et al., 1997a; van Me-
gen et al., 1997), norepinephrine (Le Melledo et al.,
1998), and the benzodiazepine/g-aminobutyric acid com-
plex (de Montigny, 1989) in the induction of panic-like
behavioral and physiological symptoms.

Interestingly, single-strand conformational polymor-
phism analysis showed that a significant association
exists between panic disorder and polymorphism of the
CCK2 receptor gene (Kennedy et al., 1999). The CA
repeat polymorphism in the upstream promoter region
appears to be different in patients versus control sub-
jects, suggesting that CCK2 receptor gene variations
may be a relevant factor in the neurobiology of panic
disorder. In addition, a polymorphism, also revealed by
single-strand conformational polymorphism analysis,
has been found in the promoter region of the gene en-
coding the CCK precursor (Wang et al., 1998).

Recent attempts to evaluate the therapeutic effects of
CCK2 receptor antagonists in panic disorder have pro-
duced disappointing results (Adams et al., 1995; Kramer
et al., 1995), mainly because the two compounds avail-
able for human use, L-365,260 and CI-988, have unfa-
vorable pharmacokinetic properties. Fortunately, sev-
eral pharmaceutical compagnies have developed CCK2
receptor antagonists with superior pharmacokinetic pro-
files. These compounds are currently under evaluation
for their potential interest in the treatment of anxiety
and other psychopathologies.

2. CCK and Schizophrenia. To date, modifications in
functioning of the dopamine system are generally ac-
cepted as a key component in the hypothetical patho-
physiological mechanisms of schizophrenia. The exis-
tence of interactions between dopaminergic and
CCKergic systems has been demonstrated by a large
body of electrophysiological, behavioral, and neurochem-
ical data (for a review, see Crawley, 1991; Derrien et al.,
1993a; Ladurelle et al., 1993). Moreover, dopamine has
been shown to be colocalized with CCK in the posterior
part of the nucleus accumbens (Hökfelt et al., 1980).
This observation can have clinical relevance because the
A-10 dopaminergic neurons that project to the nucleus
accumbens, much more than the other dopaminergic
systems, are probably concerned by the pathophysiolog-
ical mechanisms of schizophrenia (Crawley and Corwin,

1994). Numerous experiments have shown that CCK
modulates the release of dopamine and that dopaminer-
gic agents modulate the release of CCK (Crawley and
Corwin, 1994). The interactions between CCK and do-
pamine are complex and often bidirectional, with CCK
potentiating or inhibiting the action of dopamine, de-
pending on the brain region examined. Thus, local ad-
ministration of the CCK2 receptor agonists BC 264 or
CCK-8 reduced dopamine release in the nucleus accum-
bens of microdialysed rats, whereas via the i.p. route,
the former agonist produced a large increase in dopa-
mine release in the same area (Ladurelle et al., 1993,
1997). One hypothesis to account for the i.p. effects of BC
264 could be that this agonist, acting on the CCK2 re-
ceptors located in the dorsal subiculum/CA1 of the hip-
pocampus, stimulates the glutamatergic projections to
the anterior nucleus accumbens, resulting in dopamine
release (Sebret et al., 1999).

The precise role of CCK in schizophrenia remains
incompletely understood. The most prominent finding
relevant to this disorder is a reduction in postmortem
CCK mRNA levels in different brain areas (frontal, ce-
rebral and entorhinal cortices, and subiculum) of schizo-
phrenic patients (Virgo et al., 1995; Bachus et al., 1997).
In addition, significant reductions in CCK-like immuno-
reactivity have been reported in several brain regions of
schizophrenic patients (Ferrier et al., 1983, 1985; Car-
ruthers et al., 1984), especially those with predomi-
nantly negative symptoms. On the other hand, a lower
density of CCK receptor-binding sites has been found in
the hippocampus and frontal cortex of schizophrenic
patients compared with controls (Farmery et al., 1985).
However, it should be noted that not all studies con-
firmed the decrease in CCK mRNA levels in schizophre-
nia. Indeed, in the postmortem study of Schalling et al.
(1990), schizophrenic patients had even higher CCK
mRNA levels in the ventral tegmental area and substan-
tia nigra than control subjects. Such a finding should
suggest that elevated CCK synthesis in regions rich in
dopaminergic neurons may be associated with schizo-
phrenia. Methodological problems, study groups of pa-
tients that were too small, and patient heterogeneity
might have contributed to these inconsistent results.
Nevertheless, on the whole, the available data suggest
that schizophrenia may be associated with reduced CCK
activity. This reduction may be attributed to either a
decreased processing of preproCCK in neurons or a re-
duction in synaptic levels of CCK due to activations in
catabolic or putative reuptake processes (Migaud et al.,
1995) or some neurodegeneration of CCKergic neurons
in schizophrenia.

The inference that schizophrenia may be associated
with hypoactive CCKergic transmission along with re-
ports that CCK analogs have neuroleptic-like activity in
animal paradigms relevant to schizophrenia spurred a
great deal of interest in the potential antipsychotic ac-
tivity of CCK peptides. Several open studies reported
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that administration of nonselective CCK receptor ago-
nists (CCK-8; CCK-33, cerulein) improved psychotic
symptoms in schizophrenic patients when added to on-
going neuroleptic treatment (for a review, see Montgom-
ery and Green, 1988; Payeur et al., 1993). These findings
were encouraging and suggested that CCK receptor ago-
nists in combination with typical neuroleptics may be
useful for the treatment of schizophrenia. However, sub-
sequent placebo-controlled studies indicated that nonse-
lective CCK receptor agonists or antagonists are ineffec-
tive in the treatment of schizophrenia (Innis et al., 1986;
Whiteford et al., 1992). New generations of agonists and
antagonists acting with selectivity at CCK1 or CCK2
receptors are available, and clinical trials with these
new compounds, alone or in combination with dopami-
nergic agents, are eagerly expected.

3. CCK and Depression. One of the physiological ac-
tions of the neuropeptide CCK seems to involve modu-
lation of the nigrostriatal and mesolimbic dopaminergic
pathways. Taking into consideration that the mesolim-
bic dopaminergic pathways play a crucial role in moti-
vation and rewarding processes, which are likely to be
altered in depression (for a review, see Willner, 1990), a
role of CCK in mood disorders cannot be excluded.

Several studies have shown that selective CCK2 re-
ceptor agonists, such as BC 264 and BC 197, potentiate
the decrease in motor activity in mice that have been
subjected to electric footshocks the day before (condi-
tioned motility suppression test used to study antide-
pressant drugs), whereas CCK2 receptor antagonists, on
their own, exert an opposite effect (Smadja et al., 1995).
These results suggest that CCK2 receptor antagonists
have antidepressant-like properties in mice.

The involvement of CCK in behavioral responses as-
sociated with anticipatory stress has already been dem-
onstrated, and the importance of external stimuli, such
as a novel environment, in revealing the behavioral ef-
fects of CCK receptor agonists or antagonists has been
emphasized in several studies (Crawley, 1984; Daugé et
al., 1989; O’Neill et al., 1991; Lavigne et al., 1992). In the
conditioned immobility test, anticipatory stress on the
day of the test might increase the sensitivity of the CCK
system, allowing the effects of CCK2 receptor agonists
and antagonists to be detected. The antidepressant-like
effects observed with CCK2 receptor antagonists could
result from an increase in extracellular dopamine, be-
cause they were preventable by both D1 and D2 receptor
antagonists in the forced-swim test (Hernando et al.,
1994; Fig. 8). Taken together, these data suggest that
depression is associated with a hyperactive CCK2 recep-
tor system and that CCK2 receptor antagonists may be
useful in the treatment of depressive syndromes (Daugé
and Roques, 1995).

However, relatively little is known about the role of
CCK in clinical depression. Several laboratories have
demonstrated that patients with major depression dis-
play cerebrospinal fluid CCK concentrations comparable

to those of control subjects (Gerner and Yamada, 1982;
Geracioti et al., 1993). However, there is some evidence
that an increase in cerebrospinal fluid CCK levels can
occur in particularly severe depression (Löfberg et al.,
1998). On the other hand, postmortem studies have re-
vealed that compared with healthy controls and patients
with schizophrenia, suicide victims have elevated pre-
pro-CCK mRNA levels and an increased density of CCK-
containing neurons in the dorsolateral prefrontal cortex
and a higher density of CCK receptors in the frontal
cortex (Ferrier et al., 1985).

4. CCK and Memory Processes. There is increasing
preclinical evidence that the CCK system may play a
role in memory processes. The presence of CCK is con-
spicuous in brain regions suspected to underlie memory
functions, including the hippocampal formation, amyg-
daloid nuclei, and cerebral cortex. It has been suggested
that CCK1 and CCK2 receptors have different roles in
learning and memory functions (Harro and Oreland,
1993). In particular, a balance between CCK1 receptor-
mediated facilitatory effects and CCK2 receptor-medi-
ated inhibitory effects on memory retention has been
postulated (Lemaire et al., 1992, 1994). However, there
are conflicting reports on the effects of CCK2 receptor
agonists in animal models of memory. For instance, al-
though some groups have reported that selective CCK2
receptor agonists (e.g., CCK-4, BC 264) impair memory
(Katsuura and Itoh, 1986; Daugé et al., 1992; Lemaire et
al., 1992; Derrien et al., 1994a), others have found that
these peptides enhance memory (Gerhardt et al., 1994).
Treatment with BC 264 has also been described to elicit
prominent hypervigilance in monkeys and to increase
behavioral arousal in rats (Daugé and Roques, 1995).
The latter findings suggest a possible role for CCK2

FIG. 8. Prevention of the effects of L-365,260 (1 mg/kg i.p.) by the
selective dopamine D1 receptor antagonist SCH-23390 (0.07 mg/kg s.c.) or
the dopamine D2 receptor antagonist sulpiride (25 mg/kg s.c.) in the
forced-swim test in mice. ,P , .05 compared with the control group; <P ,
.05 compared with the same dose of L-365,260 without antagonists (New-
mann-Keuls test).
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receptor in attentional activation that can facilitate
learning.

To date, only a few studies have been devoted to the
effects of CCK receptor agonists on human memory. In
one study, the administration of the nonselective CCK
receptor agonist ceruletide had no demonstrable effect
on recent or remote memory, although at higher doses it
produced mild sedation. On the other hand, electrophys-
iological investigations of event-related brain potentials
showed that ceruletide improved selective attention in
healthy volunteers (Schreiber et al., 1995). Ceruletide
has also been reported to improve cognitive processing
in young, but not in elderly, healthy subjects (Dodt et al.,
1996). Recently, Shlik et al. (1998) found that the con-
tinuous administration of the selective CCK2 receptor
agonist, CCK-4, had no effect on psychomotor perfor-
mance, although it produced impairments in cognitive
tests of free recall and recognition. The results of this
study suggest that CCK-4 may exert a negative influ-
ence on memory consolidation and retrieval.

Factors that potentially contribute to discrepant
findings include differences in experimental para-
digms, dosage, and mode of drug administration. An-
other possible explanation of the discrepant findings
on the role of CCK receptors in memory function
might be due to the heterogeneity of CCK receptors
(discussed earlier). In the two-trial memory task
based on exploration of novelty, it has been shown
that BC 264 enhanced spatial working memory, sup-
porting the cognitive-enhancing properties of this ag-
onist, whereas BC 197 was found to induce an amnesic
effect (Fig. 9), a result in good agreement with the
memory deficit obtained with CCK-4 (for a review, see
Daugé and Léna, 1998). Interestingly, similar obser-
vations were made with a propionyl analog of BC 264,
pBC 264, in both young and aged rats (Taghzouti et
al., 1999). Thus, the latter CCK2 receptor agonist en-
hanced consolidation and retrieval processes in young
and aged rats but did not affect acquisition. Moreover,
it has been shown through microdialysis that BC 264,
injected i.p. at pharmacologically active doses, in-
creased the extracellular levels of dopamine and its
metabolites (dihydroxyphenyl acetic acid and ho-
movanillic acid) in the anterior part of the nucleus
accumbens (Ladurelle et al., 1997). Thus, it could be
hypothesized that activation of dopaminergic trans-
mission in the nucleus accumbens, which has been
involved in some components of memory processes
(Taghzouti et al., 1985; Ploeger et al., 1994; Floresco
et al., 1996), could be the mechanism by which BC 264
produces its effect on attention and/or memory. On the
other hand, the effects due to BC 197 might be non-
specific. Indeed, BC 197 can exert anxiogenic-like ef-
fects (Derrien et al., 1994b), and the response ob-
served after peripheral administration of this CCK2

receptor agonist in the two-trial memory task could

reflect more such effects than a true disruption of
memory processes (review in Daugé and Léna, 1998).

These results provide further evidence of the hetero-
geneity of CCK2 receptors and show that their stimula-
tion in rats, depending on the agonists used, can mediate

FIG. 9. Effects of the selective CCK2 receptor agonists BC 264 and BC
197 on working memory in a two-trial task in the Y maze. In the first trial
(acquisition phase), one arm of the maze was closed and the rats were
allowed to visit the other two arms for 3 min. During the second trial
(retrieval phase), rats had free access to the three arms for 3 min. When
the two trials were separated by a 2-h time interval, recognition memory
allowed the control rats to spend more time in the novel arm. When the
two trials were separated by a 6-h time interval, recognition memory was
lost, and the control rats spent approximately the same time in the three
arms of the maze. BC 264 or BC 197 was injected i.p. 30 min before the
second trial (restitution phase). The CCK2 receptor antagonist L365,260
was injected i.p. 60 min before the experiment. The results are expressed
as mean 6 S.E. of the percentage of time spent in the novel arm. ,P , .05
compared with control; <P , .05 and <<P , .01 compared with CCK2
receptor agonist alone (Duncan test).
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distinct behavioral responses. On the other hand, the
modulation of memory processes by BC 264 or analogs
could offer a new perspective in the treatment of atten-
tion/memory disorders associated with ageing or neuro-
degenerative diseases.

5. Interactions between CCK and Enkephalin
Systems.

a. In the Control of Pain. Anatomical studies have
shown that the distribution of CCK-8 and CCK receptors
parallels that of endogenous opioids and opioid receptors
in the pain-processing regions in both the brain and the
spinal cord (Gall et al., 1987; Pohl et al., 1990). This
overlapping distribution triggered numerous investiga-
tions on the role of CCK in nociception. Thus, several
groups described a naloxone-reversible antinociceptive
effect of CCK-8 or its analogs in relevant antinociceptive
tests, such as the hot-plate, writhing, and tail-flick tests
(for a review, see Baber et al., 1989). However, it has
also been reported that CCK-8 has antiopioid properties.
Thus, Faris et al. (1983) found that CCK reduced the
antinociceptive effects produced by the release of endog-
enous opioids but did not modify opioid-independent
analgesia induced by hind paw foot shock. In addition,
numerous studies have shown that peripherally admin-
istered CCK receptor antagonists potentiate opioid an-
tinociceptive responses, confirming the existence of a
functional antagonism by endogenous CCK and opioid
systems (for a review, see Roques and Noble, 1996). It
has been hypothesized that CCK down-regulates opioid
effects through activation of CCK2 receptors. This hy-
pothesis is supported by the data obtained with selective
CCK2 receptor antagonists. Indeed, these ligands
strongly potentiate (1200–800%) the antinociceptive ef-
fects of endogenous enkephalins in rodents treated with
RB 101, a mixed inhibitor of enkephalin-metabolizing
enzymes (Fournié-Zaluski et al., 1992; Valverde et al.,
1994). Interestingly, the combination of opioids with
selective CCK2 receptor antagonists enhanced the anti-
allodynic effects of morphine, suppressed the develop-
ment of autotomy behavior in a model of neuropathic
pain in rat, and efficiently relieved the allodynia-like
symptoms in spinally injured rats (review in Roques and
Noble, 1996).

The occurrence of functional interactions between the
CCK and enkephalin systems in the control of pain has
been suggested (Noble et al., 1993; Fig. 10). Schemati-
cally, the potentiation of the effects of exogenous or
endogenous opioids by BDNL, a nonselective CCK1/
CCK2 receptor agonist (Ruiz-Gayo et al., 1985), could be
related to an increase in the release of enkephalins due
to CCK1 receptor activation (like that occurring by com-
bined treatment with CCK-8 and a cocktail of peptidase
inhibitors, Hendrie et al., 1989) and/or a direct improve-
ment in the efficacy of transduction processes of the OP3
(m) opioid receptors, which might be allosterically
evoked by CCK1 receptor occupation (Magnuson et al.,
1990). On the other hand, CCK2 receptor activation

could in turn negatively modulate the opioidergic sys-
tem; this explains why the selective CCK2 receptor ag-
onist BC 264 produced a decrease in the lick latency in
the hot-plate test in mice (Derrien et al., 1993b). If
stimulation of CCK receptors is capable of modulating
the opioid system, this sytem can in turn regulate the
release of CCK peptides. Thus, the stimulation of OP3
(m) opioid receptors has an inhibitory influence on the
K1-evoked release of CCK-like material at spinal and
supraspinal levels (Rattray and De Belleroche, 1987;
Rodriguez and Sacristan, 1989; Benoliel et al., 1991,
1992). On the other hand, in vitro studies have shown
that OP1 (d) opioid receptor agonists enhance the K1-
evoked release of CCK-like material from slices of rat
substantia nigra and spinal cord (Benoliel et al., 1991,
1992). Also, the in vivo binding of the CCK2 receptor
selective agonist [3H]pBC 264 in the mouse brain was
found to be reduced by the administration of RB 101, a
mixed inhibitor of enkephalin-degrading peptidases or
BUBU [Tyr-D-Ser(O-tert-butyl)-Gly-Phe-Leu-Thr(O-tert-
butyl)], an OP1 (d) receptor-selective agonist, supporting
the idea that endogenous enkephalins increase the ex-
tracellular levels of CCK (competing with [3H]pBC 264
at CCK2 receptors) through the activation of OP1 (d)
opioid receptors (Ruiz-Gayo et al., 1992).

b. In Behavioral Responses. In most behavioral stud-
ies, CCK has been found to behave as an antiopioid
peptide (Noble et al., 1993; for a review, see Roques and
Noble, 1996). A dysfunction in the balance between the
two peptidergic systems involved in reward in the case of
opioids and in attention and anxiety in the case of CCK
could participate in the neurobiological mechanisms un-
derlying vulnerability in drug addiction. Furthermore, it
has been suggested that endogenous opioid peptides,
especially enkephalins, might be involved in the cause of
depression (for a review, see Roques et al., 1993) and
that CCK-mediated processes might possibly counteract
the antidepressant-like effects of opioids. In line with

FIG. 10. Hypothetical model of the supraspinal interactions between
CCK, via CCK1 and CCK2 receptors, and the opioid system via d (OP1)-
opioid and m (OP3)-opioid receptors. CCK receptor agonists, endogenous
or exogenous, stimulate CCK2 and/or CCK1 receptors, which can modu-
late the opioidergic (enkephalinergic) systems either directly (via the
binding of opioid agonists or via C-fiber evoked activity) or indirectly (via
the release of endogenous enkephalins). In addition, activation of m
(OP3)-opioid receptors, which leads to antinociceptive responses, can neg-
atively modulate the release of endogenous CCK, whereas d (OP1)-opioid
receptor activation may enhance it.
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these hypotheses, increasing the levels of endogenous
enkephalins by RB 101 was shown to induce antidepres-
sant-like effects in relevant paradigms, such as the
forced swimming, conditioned suppression of motility,
and learned helplessness tests (for a review, see Roques
and Noble, 1996). In all these models of depression,
rodents treated with RB 101 react to an adverse situa-
tion in the same way as after the administration of
“classic” antidepressants, such as imipramine, desipra-
mine, and amitriptyline.

Behavioral studies showed that blockade of CCK1 and
CCK2 receptors produces opposite effects on the opioid-

induced reduction of conditioned suppression motility due
to endogenous enkephalins protected from peptidase inac-
tivation by RB 101. Thus, the antidepressant-like effects of
RB 101 were suppresed by the CCK1 receptor antagonist
L-364,718 and enhanced by the CCK2 receptor antagonist
L-365,260 (Smadja et al., 1995; Fig. 11). Given the reliable
and strong facilitatory effects of CCK2 receptor antagonists
on the behavioral responses to RB 101, it was of interest to
investigate the regions involved in the endogenous inter-
actions between CCK and opioid systems. Because the
mesolimbic system is known to be widely involved in the
control of motivational and affective responses, two me-

FIG. 11. Conditioned suppression of motility test in mice. Effects of the CCK1 and CCK2 receptor antagonists L-364,718 and L-365,260, respec-
tively, on the antidepressant-like effects induced by i.v. injected RB 101. Mice were placed in a transparent rectangular cage with a metallic grid floor.
Animal displacements were measured by drawing squares on the floor for counting. On the first day, the mouse was left in the test cage for 6 min and
received electric footshocks. On the second day, the mouse was placed in the same cage without receiving electric footshocks, and motility changes were
tested by counting the number of squares crossed, plus the number of rearings in 6 min. The mice belonging to the control group were handled in the
same way as those in the conditioned suppression group except that they did not receive electric footshocks on the first day. ,,P , .01 compared with
control group; <P , .05 and <<P , .01 compared with the same dose of RB 101 without antagonist.

IUPHAR CLASSIFICATION OF CCK RECEPTORS 773

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


solimbic structures were studied: the anterior nucleus ac-
cumbens and the central amygdala. Moreover, the nucleus
accumbens has been implicated in the interaction between
CCK and opioid systems in the control of other pharmaco-
logical responses (Kiraly and Van Ree, 1987; Mueller
and Whiteside, 1990). The results obtained showed that
the antidepressant-like effects of RB 101 were potentiated
by microinjection of the CCK2 receptor antagonist PD-
134,308 in the anterior nucleus accumbens and the central
amygdala, but not in the caudate nucleus, suggesting that
the mesolimbic system plays an important role in the in-
teraction between CCK and opioid systems in the control of
these behavioral responses (Smadja et al., 1997).

On the other hand, the main challenge in the man-
agement of opioid addiction is to develop pharmacother-
apy to minimize the short-term withdrawal syndrome
and protracted opioid abstinence syndrome. Indeed, in
the first days after the cessation of prolonged drug use,
addicted subjects present an acute withdrawal syn-
drome, which consists of agitation, hyperalgesia, tachy-
cardia, hypertension, diarrhea, vomiting, and subjective
changes. Furthermore, a depression-like syndrome may
persist for months or longer after the last dose of opiate.
Relevant investigations have shown that during the
acute morphine-withdrawal syndrome, there is an in-
creased release of opioid peptides and that protection of
these peptides by mixed enkephalin-degrading enzyme
inhibitors reduces the opioid withdrawal syndrome (re-
view in Roques et al., 1993). The recent demonstration
that activation of CCK2 receptors could negatively mod-
ulate the opioid system (see earlier) suggests that in
contrast, the selective blockade of these receptors should
increase the ability of mixed inhibitors to decrease the
withdrawal signs. Indeed, this has recently been con-
firmed using RB 101 in association with the CCK2 re-
ceptor antagonist PD-134,308 (Maldonado et al., 1995).
Moreover, the protracted abstinence syndrome could be
improved due the antidepressant-like properties of
mixed inhibitors administered alone or in combination
with the selective CCK2 receptor antagonists. Thus, the
possibility of relapse, the most important problem in the
management of opioid addiction, should be minimized.

Interestingly, all of these behavioral studies showed
that CCK2 receptor antagonists do not apparently po-
tentiate the subjective effects of opioids (for a review, see
Roques and Noble, 1996). This finding should have im-
portant clinical implications in the management of pain,
taking into account the strong antinociceptive responses
to opioids in association with the CCK2 receptor antag-
onists.

VIII. Conclusion

Since the original characterization of CCK by Ivy and
Oldberg in 1928, followed by the isolation and sequenc-
ing of this hormone (Jorpes and Mutt, 1966), and its
detection in the CNS (Vanderhaeghen et al., 1975), con-

siderable advances have been made in the knowledge of
the roles of this neuropeptide. The actions of CCK and
related peptides have been extended to include endo-
crine secretion; motility and growth in the gastrointes-
tinal system; and regulation of satiety, anxiety, pain,
and dopamine-mediated behavior in the central and pe-
ripheral nervous systems. These actions are mediated by
at least two distinct receptors, which have been phar-
macologically characterized. The existence of these CCK
receptors (CCK1 and CCK2) has subsequently been con-
firmed by their molecular cloning. Nevertheless, the
large variety of functions mediated by CCK receptors, as
well as pharmacological studies, suggests that some het-
erogeneity exists in CCK1 and CCK2 receptors. How-
ever, such a heterogeneity has not been confirmed in
molecular biology studies, which have so far identified
only two members of the CCK receptor family. The phys-
iological and pathophysiological implications of these
receptors can now be further investigated in CCK2 re-
ceptor-deficient mice obtained through gene targeting
(Nagata et al., 1996) and in Otsuka Long-Evans To-
kushima Fatty rats, which have no functional CCK1
receptors (Kobayashi et al., 1996). Several potential clin-
ical applications concern the treatment of brain disor-
ders and/or pain with CCK2 receptor agonists or antag-
onists and of diseases involving food consumption with
CCK1 receptor ligands.
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kinin receptors: Biochemical demonstration and autoradiographic localization in
rat brain and pancreas using [3H]cholecystokinin-8 as radioligand. J Neurosci
4:1021–1031.

van Megen HG, Westenberg HG, den Boer JA, Haigh JR and Traub M (1994)
Pentagastrin induced panic attacks: Enhanced sensitivity in panic disorder pa-
tients. Psychopharmacology 114:449–455.

van Megen HG, Westenberg MG, den Boer JA, Slaap B and Scheepmakers A (1997)
Effect of the selective serotonin reuptake inhibitor fluvoxamine on CCK-4-induced
panic attacks. Psychopharmacology 129:357–364.

van Vliet IM, Westenberg HG, Slaap BR, den Boer JA and Ho Pian KL (1997)
Anxiogenic effects of pentagastrin in patients with social phobia and healthy
controls. Biol Psychiatry 42:76–78.

Vanderhaeghen JJ, Signeau JC and Gepts W (1975) New peptide in vertebrate CNS
reacting with antigastrin antibodies. Nature (Lond) 257:601–605.

Vanhoutte PM, Humphrey PPA and Spedding M (1996) XI. International Union of
Pharmacology. Recommendations for nomenclature of new receptor subtypes.
Pharmacol Rev 48:1–2.

Vigna S, Steigerwalt RW and Williams JA (1984) Characterization of cholecystokinin
receptors in bullfrog (Rana catesbeiana) brain and pancreas. Regul Pept 9:199–
212.

Vigna SR, Thorndyke MC and Williams JA (1986) Evidence for a common evolution-
ary origin of brain and pancreas cholecystokinin receptors. Proc Natl Acad Sci
USA 83:4355–4359.

Virgo L, Humphries C, Mortimer A, Barnes T, Hirsch S and de Belleroche J (1995)

Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in
schizophrenia. Biol Psychiatry 37:694–701.

Wang H-L (1997) Basic amino acids at the C-terminus of the third intracellular loop
are required for the activation of phospholipase C by cholecystokinin-B receptors.
J Neurochem 68:1728–1735.

Wang Z, Valdes J, Noyes R, Zoega T and Crowe RR (1998) Possible association of a
cholecystokinin promoter polymorphism (CCK-36CT) with panic disorder. Am J
Med Genet 81:228–234.

Wank SA (1995) Cholecystokinin receptors. Am J Physiol 269:G628–G646.
Wank SA, Harkins RT, Jensen RT, Shapira H, de Weerth A and Slattery T (1992a)

Purification, molecular cloning, and functional expression of the cholecystokinin
receptor from rat pancreas. Proc Natl Acad Sci USA 89:3125–3129.

Wank SA, Pisegna JR and de Weerth A (1992b) Brain and gastrointestinal chole-
cystokinin receptor family: Structure and functional expression. Proc Natl Acad
Sci USA 89:8691–8695.

Wank SA, Pisegna JR and de Weerth A (1994a) Cholecystokinin receptor family:
Molecular cloning, structure, and functional expression in rat, guinea pig, and
human. Ann NY Acad Sci 713:49–66.

Wank SA, Pisegna JR and Poirot SS (1994b) Functional significance of potential
splice variants of the human cholecystokinin (CCK) B receptor. Gastroenterology
106:A570.

Weinberg DS, Ruggeri B, Barber MT, Biswas S, Miknyocki S and Waldman SA
(1997) Cholecystokinin A and B receptors are differentially expressed in normal
pancreas and pancreatic adenocarcinoma. J Clin Invest 100:597–603.

Weng JH, Bado A, Garbay C and Roques BP (1996a) Novel CCK-B receptor agonists:
Diketopiperazine analogs derived from CCK4 bioactive conformation. Regul Pept
65:3–9.

Weng JH, Blommaert AGS, Moizo L, Bado A, Ducos B, Böhme A, Garbay C and
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ERRATUM

A typographical error was introduced by the printer in the author line in the article by Noble et al. [Noble
F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M and Roques BP (1999) International Union
of Pharmacology. XXI. Structure, Distribution, and Functions of Cholecystokinin Receptors. Pharmacol
Rev 51:745–781]. The first author’s name appeared incorrectly as Frank Noble. The correct name is
Florence Noble. We regret any inconvenience caused by this error.
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